Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (9): 1820-1832.doi: 10.3864/j.issn.0578-1752.2024.09.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Biological Characteristics of H6N1 Subtype Avian Influenza Virus from 2019 to 2022 in China

CHEN Yuan(), CUI PengFei, SHI JianZhong, ZHANG YuanCheng, YU QingQing, YAN Cheng, ZHANG YaPing, WANG CongCong, ZHANG Jie, WANG Yan, DENG GuoHua(), CHEN HuaLan   

  1. Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences/State Key Lab for Animal Disease Control and Prevention/National Poultry Laboratory Animal Resource Center, Harbin 150069
  • Received:2023-10-27 Accepted:2023-12-24 Online:2024-05-01 Published:2024-05-09
  • Contact: DENG GuoHua

Abstract:

【Background】H6 avian influenza virus (AIV) is widely prevalent in southern China, which is one of the most common subtypes of AIVs circulating in poultry in China. H6N1 AIVs frequently undergo gene reassortment events with other wild bird-origin virus, which can be a donor to provide internal gene segments to highly pathogenic AIVs, which may lead to the emergence of novel virus and threaten human health.【Objective】The aim of this study was to investigate the evolution and biological characteristics of H6N1 AIVs in China, so as to provide valuable data for the prevention and control of avian influenza in China.【Method】From 2019 to 2022, cloacal and throat swabs were collected from live poultry markets and breeding farms across 25 provinces or autonomous regions in China. 7 H6N1 viruses were isolated by inoculating into chicken embryos. The complete genome sequences were determined, followed by analyzing their phylogenetic relationships, receptor binding properties, as well as replication in SPF chickens and BALB/c mice.【Result】The phylogenetic analysis revealed that the genes of the 7 H6N1 AIVs were highly homologous to those of wild bird-origin viruses from North America and Southeast Asia, indicating a complex genetic origin with significant genetic diversity. According to the Bayesian evolution analysis, the HA gene of H6 subtype AIVs had many times of intercontinental transmission in the history, and the Eurasian lineage strains also had a long time of circulation in North America. The HA gene of one strain of the virus was highly homologous to that of the North American strain. Based on the results of Bayesian evolutionary analysis, it was hypothesized that the virus was introduced to China via wild birds after undergoing complex genetic reassortment in wild birds. Analysis of specific amino acid sites revealed that the cleavage site of HA protein was PQIETR↓GLF, which was the signature of low pathogenic AIVs. In addition, one other virus had a Y52H mutation in the NP protein, which was critical in BTN3A3 evasion. Receptor binding analysis demonstrated that some of the H6N1 AIVs bound to both avian-type receptor and human-type receptor, however, their affinity towards human receptors was weaker compared with avian receptors. Infectivity experiments on SPF chickens indicated that flocks was still able to shed virus up through oropharyngeal and cloacal routes after infection with A/chicken/Jiangxi/S40445/2019(H6N1) and that the virus could be transmitted via contact within flocks. Only a few chickens infected with A/duck/Jiangxi/S10941/2019(H6N1) shed virus through their oropharyngeal tract, and the virus could not be transmitted via contact among chickens. The infectivity experiments conducted on mice showed that H6N1 subtype AIVs could replicate in the respiratory organs of infected mice without prior adaptation, but display low pathogenicity levels in mice.【Conclusion】Most of the genes of H6N1 subtype AIV isolated in China from 2019 to 2022 were derived from wild bird-origin viruses, and those migratory birds could introduce the viruses into China via the East Asia-Australasian migratory flyway. Some of the H6 AIVs bound to human-type receptors and replicate in the respiratory organs of mice suggested that H6N1 viruses posed a potential threat to human health.

Key words: H6N1, avian influenza virus, intercontinental transmission, reassortment, infectivity

Table 1

Information of H6N1 AIVs"

毒株名称
Virus name
宿主
Host
分离地点
Location
省份
Province
分离年份
Year
A/duck/Hubei/S4186/2019 (H6N1) ( DK/HuB/186/19) 鸭Duck 养殖场Farm 湖北Hubei 2019
A/duck/Jiangxi/S10941/2019 (H6N1) ( DK/JX/941/19) 鸭Duck 养殖场Farm 江西Jiangxi 2019
A/chicken/Jiangxi/S40445/2019 (H6N1) ( CK/JX/445/19) 鸡Chicken 养殖场Farm 江西Jiangxi 2019
A/duck/Fujian/S1048/2020 (H6N1) ( DK/FJ/48/20) 鸭Duck 市场Market 福建Fujian 2020
A/duck/Hunan/S10268/2020 (H6N1) ( DK/HuN/268/20) 鸭Duck 养殖场Farm 湖南Hunan 2020
A/duck/Guizhou/S4674/2021 (H6N1) ( DK/GZ/674/21) 鸭Duck 市场Market 贵州Guizhou 2021
A/duck/Hunan/S40963/2021 (H6N1) ( DK/HuN/963/21) 鸭Duck 养殖场Farm 湖南Hunan 2021

Table 2

Homology analysis of each gene segment of 7 H6N1 AIVs"

病毒
Virus
基因
Gene
核苷酸相似性最高的病毒
Virus with highest identity
相似性
Identity
片段编号
Segment ID
DK/HuB/186/19 HA A/mallard/Anhui/2-549/2019 (H6N1) 99% EPI1743652
NA A/Anser brachyrhynchus/South Korea/42/2019 (H6N1) 99% EPI2395430
PB2 A/mallard/Anhui/2-549/2019 (H6N1) 99% EPI1743649
PB1 A/wild bird/Hunan/01.18 DTHBDF33/2019(H9N2) 99% EPI1626428
PA A/mallard/Korea/H37-1/2019 (H10N3) 98% EPI1752410
NP A/wild bird /Shandong/11452/2019 (H9N2) 99% EPI1896647
M A/White-fronted Goose/South Korea/KNU2021-18/2021 (H6N2) 99% EPI2153859
NS A/common teal/Shanghai/JDS110203/2019 (H12N8) 99% EPI1767944
DK/JX/941/19 HA A/northern pintail/Alaska/UGAI17-4733/2017 (H6N5) 99% EPI1774620
NA A/White-fronted goose/South Korea/KNU2019-37/2019 (H1N1) 99% EPI1902856
PB2 A/Anser fabalis/South Korea/50/2019 (H6N2) 99% EPI2395451
PB1 A/spot-billed duck/South Korea/JB32-105/2019 (H4N2) 99% EPI1903725
PA A/duck/Mongolia/543/2015 (H4N6) 99% EPI704413
NP A/pink-footed goose/Korea/H3473/2015 (H5N3) 99% EPI1513819
M A/mallard/Omsk region/45/2020 (H5N2) 99% EPI1847610
NS A/duck/Mongolia/MN18-14/2018 (H3N8) 100% EPI1903627
CK/JX/445/19 HA A/mallard/Anhui/2-549/2019 (H6N1) 99% EPI1743652
NA A/Anser brachyrhynchus/South Korea/42/2019 (H6N1) 99% EPI2395430
PB2 A/duck/Mongolia/826/2019 (H4N6) 99% EPI1777578
PB1 A/duck/Mongolia/820/2019 (H4N2) 99% EPI1777571
PA A/environment/Korea/W437/2012 (H7N7) 98% EPI837838
NP A/mallard/Anhui/3-617/2019 (H6N1) 98% EPI1743661
M A/wild bird/Korea/H2542/2015 (H10N7) 99% EPI1752361
NS A/duck/Mongolia/518/2015 (H10N3) 99% EPI704566
DK/FJ/48/20 HA A/mallard/Anhui/2-549/2019 (H6N1) 99% EPI1743652
NA A/Anser brachyrhynchus/South Korea/42/2019 (H6N1) 99% EPI2395430
PB2 A/mallard/Anhui/2-549/2019 (H6N1) 99% EPI1743649
PB1 A/duck/Mongolia/217/2018 (H3N8) 98% EPI1818050
PA A/little curlew/Liaoning/dandong142/2019 (H7N4) 98% EPI1738381
NP A/wild bird /Shandong/11452/2019 (H9N2) 99% EPI1896647
M A/environment/Kagoshima/KU-G3/2019 (H3N8) 99% EPI2073561
NS A/common teal/Shanghai/JDS110203/2019 (H12N8) 99% EPI1767944
DK/HuN/268/20 HA A/mallard/Anhui/2-549/2019 (H6N1) 99% EPI1743652
NA A/Anser brachyrhynchus/South Korea/42/2019 (H6N1) 99% EPI2395430
PB2 A/mallard/Anhui/2-549/2019 (H6N1) 99% EPI1743649
PB1 A/wild duck/Shandong/W11397/2019 (H3N8) 99% EPI2245882
PA A/Gadwall/Buryatia/2206/2019 (H12N5) 99% EPI1638480
NP A/mallard/Anhui/2-549/2019 (H6N1) 99% EPI1743645
M A/environment/Japan/KU-C10/2020 (H3N8) 99% EPI2596493
NS A/common teal/Shanghai/JDS110203/2019 (H12N8) 99% EPI1767944
DK/GZ/674/21 HA A/Anser albifrons/South Korea/50/2022 (H6N2) 99% EPI2395103
NA A/Anser albifrons/South Korea/64/2022 (H6N1) 99% EPI2395393
PB2 A/Mallard/South Korea/KNU2021-49/2021 (H7N7) 99% EPI2153561
PB1 A/wild duck/Shandong/W11397/2019 (H3N8) 99% EPI2245882
PA A/enviroment/Shanghai/CM20659/2020(H4N2) 99% EPI2600926
NP A/Common Teal/South Korea/KNU2021-22/2021 (H8N4) 99% EPI2153541
M A/mallard/South Korea/20X-20/2021 (H7N9) 99% EPI1930790
NS A/environment/Kagoshima/KU-3c/2019 (H11N2) 99% EPI2075052
DK/HuN/963/21 HA A/Common_Teal/Buryatia/73i/2019 (H6N1) 98% EPI1657043
NA A/Mallard/South Korea/KNU2021-9/2021 (H1N1) 98% EPI2153457
PB2 A/Mallard/South Korea/KNU2021-49/2021 (H7N7) 99% EPI2153561
PB1 A/duck/Mongolia/543/2015 (H4N6) 98% EPI704412
PA A/Wild Duck/South Korea/KNU2020-101/2020 (H9N2) 99% EPI1931705
NP A/wild duck/Shandong/W6271/2019 (H3N8) 99% EPI2245829
M A/environment/Japan/KU-C10/2020 (H3N8) 99% EPI2596493
NS A/environment/Kagoshima/KU-3c/2019 (H11N2) 99% EPI2075052

Fig. 1

Maximum clade credibility tree inferred from Bayesian analysis of HA"

Fig. 2

Phylogenetic analysis of NA"

Fig. 3

Phylogenetic analysis of PB2, PB1, PA, NP, M, and NS"

Table 3

Evolutionary relationship of DK/JX/941/19"

基因
Gene
最近亲缘关系毒株
Most closely related strain
最近共同祖先时间(95%置信区间)
tMRCA (95% HPD interval)
后验概率
Posterior probability
PB2 Waterfowl strains (South Korea and China) 2018.3 (2017.3—2018.10) 0.9976
PB1 Waterfowl H4N2 (South Korea) 2017.6 (2016.6—2018.6) 0.9993
PA Waterfowl H4N6 (South Korea) 2018.4 (2017.1—2019.1) 0.2914
HA Waterfowl, wild bird strains (South Korea and China) 2017.11 (2017.7—2018.4) 0.9752
NP Duck H3N2 (Vietnam) 2016.5 (2013.3—2018.7) 0.9167
NA Waterfowl H1N1 (South Korea) 2018.12 (2018.6—2019.2) 0.9981
M Waterfowl strains (Siberia of Russia) 2017.11 (2016.11—2018.7) 0.2385
NS Duck H4N6 (Mongolia) 2019.1 (2018.9—2019.2) 0.6487

Fig. 4

Body weight changes in mice"

Fig. 5

Virus titers from oropharyngeal/cloacal swabs of SPF chicken post inoculation a: Virus shedding in the CK/JX/445/19-inoculated group; b: Virus shedding in the DK/JX/941/19-inoculated group; c: Virus shedding of the contact chickens-CK/JX/445/19; d: Virus shedding of the contact chickens-DK/JX/941/19"

Fig. 6

Receptor-binding properties of H6N1 AIVs"

[1]
LANG G, FERGUSON A E, CONNELL M C, WILLS C G. Isolation of an unidentified hemagglutinating virus from the respiratory tract of turkeys. Avian Diseases, 1965, 9(4): 495-504.

pmid: 5855810
[2]
OLESIUK O M, SNOEYENBOS G H, ROBERTS D H. An influenza A virus isolated from turkeys. Avian Diseases, 1967, 11(2): 203.

doi: 10.2307/1588114
[3]
DOWNIE J C, LAVER W G. Isolation of a type A influenza virus from an Australian pelagic bird. Virology, 1973, 51(2): 259-269.

pmid: 4632652
[4]
ZHAO G, LU X L, GU X B, ZHAO K K, SONG Q Q, PAN J J, XU Q G, DUAN Z Q, PENG D X, HU S L, WANG X Q, LIU X F. Molecular evolution of the H6 subtype influenza A viruses from poultry in Eastern China from 2002 to 2010. Virology Journal, 2011, 8: 470.

doi: 10.1186/1743-422X-8-470 pmid: 21999472
[5]
BI Y H, CHEN Q J, WANG Q L, CHEN J J, JIN T, WONG G, QUAN C S, LIU J, WU J, YIN R F, et al. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China. Cell Host & Microbe, 2016, 20(6): 810-821.
[6]
HUANG K, BAHL J, FAN X H, VIJAYKRISHNA D, CHEUNG C L, WEBBY R J, WEBSTER R G, CHEN H, SMITH G J D, PEIRIS J S M, GUAN Y. Establishment of an H6N2 influenza virus lineage in domestic ducks in Southern China. Journal of Virology, 2010, 84(14): 6978-6986.

doi: 10.1128/JVI.00256-10 pmid: 20463062
[7]
HUANG K, ZHU H C, FAN X H, WANG J, CHEUNG C L, DUAN L, HONG W S, LIU Y M, LI L F, SMITH D K, CHEN H L, WEBSTER R G, WEBBY R J, PEIRIS M, GUAN Y. Establishment and lineage replacement of H6 influenza viruses in domestic ducks in Southern China. Journal of Virology, 2012, 86(11): 6075-6083.

doi: 10.1128/JVI.06389-11 pmid: 22438558
[8]
CUI J Q, CUI P F, SHI J Z, FAN W F, XING X, GU W L, ZHANG Y C, ZHANG Y P, ZENG X Y, JIANG Y P, et al. Continued evolution of H6 avian influenza viruses isolated from farms in China between 2014 and 2018. Transboundary and Emerging Diseases, 2022, 69(4): 2156-2172.

doi: 10.1111/tbed.v69.4
[9]
ZHANG G H, KONG W L, QI W B, LONG L P, CAO Z X, HUANG L Z, QI H T, CAO N, WANG W H, ZHAO F R, et al. Identification of an H6N6 swine influenza virus in Southern China. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 2011, 11(5): 1174-1177.

doi: 10.1016/j.meegid.2011.02.023
[10]
WEI S H, YANG J R, WU H S, CHANG M C, LIN J S, LIN C Y, LIU Y L, LO Y C, YANG C H, CHUANG J H, et al. Human infection with avian influenza A H6N1 virus: An epidemiological analysis. TheLancet Respiratory Medicine, 2013, 1(10): 771-778.
[11]
YUAN J, ZHANG L, KAN X Z, JIANG L, YANG J K, GUO Z C, REN Q Q. Origin and molecular characteristics of a novel 2013 avian influenza a(H6N1) virus causing human infection in Taiwan. Clinical Infectious Diseases, 2013, 57(9): 1367-1368.

doi: 10.1093/cid/cit479 pmid: 23881153
[12]
CHEUNG C L, VIJAYKRISHNA D, SMITH G J D, FAN X H, ZHANG J X, BAHL J, DUAN L, HUANG K, TAI H, WANG J, et al. Establishment of influenza A virus (H6N1) in minor poultry species in Southern China. Journal of Virology, 2007, 81(19): 10402-10412.

pmid: 17652385
[13]
LEE M S, CHANG P C, SHIEN J H, CHENG M C, CHEN C L, SHIEH H K. Genetic and pathogenic characterization of H6N1 avian influenza viruses isolated in Taiwan between 1972 and 2005. Avian Diseases, 2006, 50(4): 561-571.

doi: 10.1637/7640-050106R.1
[14]
HOFFMANN E, STECH J, GUAN Y, WEBSTER R G, PEREZ D R. Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology, 2001, 146(12): 2275-2289.

doi: 10.1007/s007050170002
[15]
ZHANG D, GAO F L, JAKOVLIĆ I, ZOU H, ZHANG J, LI W X, WANG G T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 2020, 20(1): 348-355.

doi: 10.1111/1755-0998.13096 pmid: 31599058
[16]
SUCHARD M A, LEMEY P, BAELE G, AYRES D L, DRUMMOND A J, RAMBAUT A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 2018, 4(1): vey016.
[17]
崔鹏飞, 卢昆鹏, 陈思, 肖丽, 关立峥, 邓国华, 陈化兰. 两株H3N8亚型禽流感病毒(AIV)的生物学特性. 农业生物技术学报, 2016, 24(7): 980-986.
CUI P F, LU K P, CHEN S, XIAO L, GUAN L Z, DENG G H, CHEN H L. Biological Characteristic of Two H3N8 Subtype Avian influenza viruses(AIV). Journal of Agricultural Biotechnology, 2016, 24(7): 980-986. (in Chinese)
[18]
GAO Y W, ZHANG Y, SHINYA K, DENG G H, JIANG Y P, LI Z J, GUAN Y T, TIAN G B, LI Y B, SHI J Z, et al. Identification of amino acids in HA and PB 2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathogens, 2009, 5(12): e1000709.
[19]
PINTO R M, BAKSHI S, LYTRAS S, ZAKARIA M K, SWINGLER S, WORRELL J C, HERDER V, HARGRAVE K E, VARJAK M, CAMERON-RUIZ N, et al. BTN3A3 evasion promotes the zoonotic potential of influenza A viruses. Nature, 2023, 619: 338-347.

doi: 10.1038/s41586-023-06261-8
[20]
TADA T, SUZUKI K, SAKURAI Y, KUBO M, OKADA H, ITOH T, TSUKAMOTO K. NP body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens. Journal of Virology, 2011, 85(4): 1834-1846.

doi: 10.1128/JVI.01648-10 pmid: 21123376
[21]
MUNSTER V J, BAAS C, LEXMOND P, WALDENSTRÖM J, WALLENSTEN A, FRANSSON T, RIMMELZWAAN G F, BEYER W E P, SCHUTTEN M, OLSEN B, et al. Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathogens, 2007, 3(5): e61.
[22]
YAO Z Z, ZHENG H B, XIONG J S, MA L P, GUI R, ZHU G L, LI Y, YANG G X, CHEN G, ZHANG J, CHEN Q J. Genetic and pathogenic characterization of avian influenza virus in migratory birds between 2015 and 2019 in central China. Microbiology Spectrum, 2022, 10(4): e0165222.
[23]
KANG H M, JEONG O M, KIM M C, KWON J S, PAEK M R, CHOI J G, LEE E K, KIM Y J, KWON J H, LEE Y J. Surveillance of avian influenza virus in wild bird fecal samples from South Korea, 2003-2008. Journal of Wildlife Diseases, 2010, 46(3): 878-888.

pmid: 20688693
[24]
BAHL J, VIJAYKRISHNA D, HOLMES E C, SMITH G J D, GUAN Y. Gene flow and competitive exclusion of avian influenza A virus in natural reservoir hosts. Virology, 2009, 390(2): 289-297.

doi: 10.1016/j.virol.2009.05.002 pmid: 19501380
[25]
GU W L, SHI J Z, CUI P F, YAN C, ZHANG Y P, WANG C C, ZHANG Y C, XING X, ZENG X Y, LIU L L, et al. Novel H5N6 reassortants bearing the clade 2.3.4.4b HA gene of H5N8 virus have been detected in poultry and caused multiple human infections in China. Emerging Microbes & Infections, 2022, 11(1): 1174-1185.
[26]
YIN X, DENG G H, ZENG X Y, CUI P F, HOU Y J, LIU Y J, FANG J Z, PAN S X, WANG D X, CHEN X H, et al. Genetic and biological properties of H7N9 avian influenza viruses detected after application of the H7N9 poultry vaccine in China. PLoS Pathogens, 2021, 17(4): e1009561.
[27]
ZHANG Y C, SHI J Z, CUI P F, ZHANG Y P, CHEN Y, HOU Y J, LIU L L, JIANG Y P, GUAN Y T, CHEN H L, et al. Genetic analysis and biological characterization of H10N3 influenza A viruses isolated in China from 2014 to 2021. Journal of Medical Virology, 2023, 95(2): e28476.
[28]
YANG R G, SUN H L, GAO F, LUO K W, HUANG Z, TONG Q, SONG H, HAN Q Q, LIU J Y, LAN Y, et al. Human infection of avian influenza A H3N8 virus and the viral origins: A descriptive study. The Lancet Microbe, 2022, 3(11): e824-e834.
[29]
ZENG X Y, HE X W, MENG F, MA Q, WANG Y, BAO H M, LIU Y J, DENG G H, SHI J Z, LI Y B, et al. Protective efficacy of an H5/H7 trivalent inactivated vaccine (H5-Re13, H5-Re14, and H7-Re4 strains) in chickens, ducks, and geese against newly detected H5N1, H5N6, H5N8, and H7N9 viruses. Journal of Integrative Agriculture, 2022, 21(7): 2086-2094.

doi: 10.1016/S2095-3119(22)63904-2
[30]
KANDEIL A, PATTON C, JONES J C, JEEVAN T, HARRINGTON W N, TRIFKOVIC S, SEILER J P, FABRIZIO T, WOODARD K, TURNER J C, et al. Rapid evolution of a(H5N1) influenza viruses after intercontinental spread to North America. Nature Communications, 2023, 14: 3082.

doi: 10.1038/s41467-023-38415-7 pmid: 37248261
[31]
JIN Y F, CUI H, JIANG L N, ZHANG C, LI J J, CHENG H L, CHEN Z H, ZHENG J, ZHANG Y D, FU Y Y, et al. Evidence for human infection with avian influenza a(H9N2) virus via environmental transmission inside live poultry market in Xiamen, China. Journal of Medical Virology, 2023, 95(1): e28242.
[32]
ROGERS G N, PAULSON J C. Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology, 1983, 127(2): 361-373.

pmid: 6868370
[33]
LONG J S, GIOTIS E S, MONCORGÉ O, FRISE R, MISTRY B, JAMES J, MORISSON M, IQBAL M, VIGNAL A, SKINNER M A, BARCLAY W S. Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature, 2016, 529: 101-104.

doi: 10.1038/nature16474
[34]
MÄNZ B, DORNFELD D, GÖTZ V, ZELL R, ZIMMERMANN P, HALLER O, KOCHS G, SCHWEMMLE M. Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein. PLoS Pathogens, 2013, 9(3): e1003279.
[35]
QU Z Y, MA S J, KONG H H, DENG G H, SHI J Z, LIU L L, SUZUKI Y, CHEN H L. Identification of a key amino acid in hemagglutinin that increases human-type receptor binding and transmission of an H6N2 avian influenza virus. Microbes and Infection, 2017, 19(12): 655-660.

doi: 10.1016/j.micinf.2017.09.008
[1] REN CaiXia, LIU Lin, LIU ShengXue, BU Fang DI, XIANG BenChun, ZHENG YinYing, CUI BaiMing. Complete Genome Sequence Analysis and Infectious Clone Construction of Mume Virus A Peach Isolate pp in Xinjiang [J]. Scientia Agricultura Sinica, 2024, 57(19): 3810-3822.
[2] WANG YanWen,WANG MengJing,ZHANG Hong,GAO XinXin,GUO Jing,LI XuYong. Evolution of Human H9N2 Avian Influenza Virus in China from 1998 to 2021 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4075-4090.
[3] JING Dan, YUE XiaoFeng, BAI YiZhen, GUO Can, DING XiaoXia, LI PeiWu, ZHANG Qi. The Infectivity of Aspergillus flavus in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(23): 5008-5020.
[4] LI Li, DU XIN, ZHANG LiNa, YANG Liu, GAO XiaoQing, TANG DongXue, ZHAO HaiYuan, JIANG XiaoMei, ZHANG TianShu, LI JinXiang. Optimization of Cultivation Conditions for Reassortant Avian Influenza Virus H7N9 H7-Re1 Strain [J]. Scientia Agricultura Sinica, 2018, 51(17): 3415-3426.
[5] CHEN Hong, YANG Liu, SONG HaiYan, SHI Ying, MENG LingWei, FU ChunJie, Zhang Dan, ZHAO HaiYuan, LI JinXiang, JIANG XiaoMei, ZHANG TianShu. Domestication of Suspended MDCK Cells and Cultivation of H5 Subtype Avian Influenza Virus [J]. Scientia Agricultura Sinica, 2018, 51(17): 3405-3414.
[6] WANG Yun-he, BAO Hong-mei, SUN Jia-shan, LI Yan-bing, XU Xiao-long, WANG Zi-long, SHI Jian-zhong, ZENG Xian-ying, WANG Xiu-rong, CHEN Hua-lan. Development of RT-PCR Technique for Detection of H7N9 Subtype Avian Influenza Virus [J]. Scientia Agricultura Sinica, 2015, 48(15): 3050-3055.
[7] ZHAO Qing-qing, LI Qun-hui, ZHU Jie, ZHONG Lei, LIU Jing-jing, GU Min, WANG Xiao-quan, LIU Wen-bo, LIU Xiu-fan. Genome Sequencing and Genetic Analysis of H4N8 Subtype Avian Influenza Virus Isolated from Duck [J]. Scientia Agricultura Sinica, 2015, 48(15): 3040-3049.
[8] DING Pei-Pei, LIU Yue-Huan, CHEN Ming-Yong, HAN Chun-Hua, LIN Jian, HAN Jing-Wen, PAN Jie. Study on the Susceptibility of Turtledoves to Avian Influenza Virus Subtype H9N2 and its Receptor [J]. Scientia Agricultura Sinica, 2012, 45(12): 2482-2490.
[9] CHEN Lu, LIU Shou-Chuan, ZHAO Jun, WANG Chuan-Qing, WANG Ze-Lin. Characteristics of Pathogenic and HA Antigenic Variation of H9N2 Subtybe Avian Influenza Viruses Isolated from 1998 to 2008 in China [J]. Scientia Agricultura Sinica, 2011, 44(24): 5100-5107.
[10] HUANG Yan-yan,HU Bei-xia,WEN Xin-tian,CAO San-jie,XU Dong,ZHANG Xiu-mei
. Evolution Analysis of the PB1-F2 Genes of Influenza A Viruses Isolated from China
[J]. Scientia Agricultura Sinica, 2009, 42(6): 2156-2163 .
[11] . Study on Expressing Avian Influenza virus hemagglutinin (H5N1) gene in Lotus corniculatus [J]. Scientia Agricultura Sinica, 2008, 41(1): 303-307 .
[12] ,,,,. Pathogenicity of H5N1 Influenza Virus for Ducks [J]. Scientia Agricultura Sinica, 2006, 39(02): 412-417 .
[13] ,,,. Establishment of Reverse Genetics System of Highly Pathogenic H5N1 Avian Influenza Virus A/goose/Guangdong/1/96 [J]. Scientia Agricultura Sinica, 2005, 38(08): 1686-1690 .
[14] ,,,. Detection of cDNA of Avian Influenza Virus by DNA Microarray [J]. Scientia Agricultura Sinica, 2005, 38(02): 394-398 .
[15] ,. Comparative Study on the Infectivity and Spore Surface Protein of Nosema bombycis and Its Morphological Variant Strain [J]. Scientia Agricultura Sinica, 2004, 37(11): 1682-1698 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!