Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (1): 159-172.doi: 10.3864/j.issn.0578-1752.2024.01.011

• HORTICULTURE • Previous Articles     Next Articles

Effects of Inoculation with Indigenous and Exogenous Arbuscular Mycorrhizal Fungi on Drought Resistance of Pyrus betulaefolia and Its Adaptation Mechanism

LI Han1(), JIANG ShangTao1, PENG HaiYing1, LI PeiGen1, GU ChangYi1, ZHANG JinLian2, CHEN TingSu2, XU YangChun1, SHEN QiRong1, DONG CaiXia1()   

  1. 1 College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095
    2 Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007
  • Received:2023-05-16 Accepted:2023-08-15 Online:2024-01-01 Published:2024-01-10

Abstract:

【Objective】Arbuscular mycorrhizal (AM) fungi play a significant role in enhancing plant growth and improving resistance to environmental stress. The aim of this study was to screen AM fungi that can withstand drought stress in pear seedlings, so as to establish a theoretical foundation and technical approach for pear mycorrhizal cultivation. 【Method】In this study, a pot experiment and high-throughput sequencing technology were employed to investigate the effects of single and mixed inoculation with indigenous AM fungi, including Claroideoglomus lamellosum (Cl), the exogenous fungus Funneliformis mosseae (Fm), Rhizophagus intraradices (Ri), and Acaulospora mellea (Am), on the growth of Pyrus betulaefolia seedlings under normal and drought conditions. The changes in the AM fungal community in the roots and rhizosphere soil of P. betulaefolia seedlings were analyzed under mixed inoculation (Mix) after 0, 3, and 6 weeks of drought treatment. 【Result】 Under normal and drought conditions, the single inoculation with Cl, Ri, and Mix significantly increased the plant height, stem diameter, leaf area, and relative water content of the leaves of pear seedlings, resulting in a dry weight increase of 35.26% to 52.20%. Additionally, the uptake of phosphorus, potassium, calcium, and magnesium in the aboveground part of the seedlings was enhanced, especially phosphorus uptake, with a mycorrhizal phosphorus uptake effect of up to 1.0. The exogenous fungus Am showed less effectiveness, while Fm inhibited the growth of P. betulaefolia seedlings under normal water supply conditions. Regression analysis indicated that the growth and element absorption effects of mycorrhizal fungi increased with the degree of infection. Under drought stress, AM fungal inoculation significantly reduced the MDA (malondialdehyde) content in the leaves of P. betulaefolia seedlings and increased the activity of antioxidant enzymes and the content of proline to varying degrees. Sequencing results demonstrated that the structure of the AM fungal community in the roots and rhizosphere soil of P. betulaefolia seedlings changed significantly under drought stress compared with normal water conditions. The exogenous fungus Ri dominated the community, followed by Cl and Am, while Fm was the least abundant. The abundance of Ri in the roots significantly increased with the degree of drought stress. 【Conclusion】In conclusion, the different AM fungi had varying effects on the growth of P. betulaefolia seedlings, with the indigenous strain Cl and the exogenous strain Ri showing strong growth-promoting effect and drought resistance. The increase in Ri abundance in the AM fungal community was an important adaptation mechanism for P. betulaefolia seedlings to withstand drought stress.

Key words: drought stress, Pyrus betulaefolia, arbuscular mycorrhizal fungi, growth-promoting, community structure

Fig. 1

Morphology of AMF spores in pear and peach rhizosphere A: Claroideoglomus lamellosum (CXL-18, Cl), A1: Water; A2: Melzer’s reagent; A3: Lactic acid phenol cotton blue reagent; A4: PVLG and Melzer’s reagent. B: Acaulospora mellea (YT-6, Am), B1: Water; B2: Melzer’s reagent; B3: Lactic acid phenol cotton blue reagents; B4: PVLG and Melzer’s reagent"

Fig. 2

Phylogenetic tree based on 18S rRNA sequences"

Table 1

Effects of different inoculation treatments on the growth of P. betulaefolia seedlings under normal and drought conditions"

处理
Treatment
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
叶面积
Leaf area
(cm²)
叶绿素含量
ChlorophyII content (mg∙g-1)
干重
Dry weight
(g)
叶片相对含水量
Relative water content of leaves (%)
正常
Normal
CK 8.01±1.70cd 2.75±0.26bc 126.36±4.21e 1.43±0.15bc 1.82±0.16bc 66.66±2.38bc
Ri 20.02±3.46a 3.48±0.42a 240.21±25.10a 1.09±0.12d 2.58±0.40a 78.58±3.50a
Fm 9.24±2.33cd 2.76±0.34bc 107.41±22.95fg 1.43±0.09bc 1.18±0.19d 80.50±7.13a
Am 9.94±3.11cd 3.10±0.36ab 143.94±19.94d 1.36±0.09c 2.16±0.25b 76.62±5.46a
Cl 14.48±4.24b 3.45±0.48a 230.22±6.19ab 1.40±0.07bc 2.72±0.28a 77.76±0.50a
Mix 21.30±3.46a 3.38±0.48a 218.88±21.92b 1.28±0.04c 2.77±0.64a 78.24±7.41a
干旱
Drought
CK 6.75±1.68d 2.70±0.40bc 91.69±5.37g 1.64±0.03a 1.56±0.20c 58.09±1.02d
Ri 14.02±2.43b 2.81±0.43bc 153.22±20.65d 1.38±0.07c 1.84±0.14bc 80.85±4.23a
Fm 7.16±1.26cd 2.60±0.42c 103.15±17.95fg 1.43±0.08bc 1.60±0.29c 66.18±5.20c
Am 6.75±1.70d 2.42±0.41c 72.05±8.55h 1.62±0.02a 1.59±0.32c 76.24±1.87a
Cl 10.11±3.93c 2.85±0.23bc 121.16±2.85ef 1.55±0.07ab 2.11±0.31b 73.81±1.16ab
Mix 14.73±3.76b 2.64±0.42c 175.72±9.66c 1.62±0.03a 2.12±0.26b 72.80±2.25abc

Fig. 3

Mycorrhizal growth response (A) and mycorrhizal nitrogen (B), phosphorus (C), potassium (D), calcium (E) and magnesium (F) uptake response of P. betulaefolia shoot inoculated with different AMF species under normal and drought conditions"

Table 2

Mycorrhizal infection, hyphal density and spore density of P. betulaefolia seedlings inoculated with different treatments under normal and drought conditions"

处理
Treatment
F
(%)
M
(%)
A
(%)
菌丝密度
Hyphal density (cm∙g-1)
孢子量
Spores number (g-1 soil)
正常
Normal
Ri 100±0a 44.81±2.43b 28.71±3.22a 12.68±2.09c 11.06±1.57a
Fm 80.56±17.35b 16.89±3.69e 6.42±1.25de 9.70±0.24c 1.53±0.12g
Am 88.89±9.62ab 28.56±4.57d 8.93±0.34cd 12.41±2.22c 11.17±1.11a
Cl 100±0a 18.93±1.58e 4.81±1.28ef 12.55±1.93c 9.53±0.40b
Mix 100±0a 47.62±2.30b 16.12±1.05b 23.24±0.52b 6.33±1.29c
干旱
Drought
Ri 100±0a 54.28±1.89a 14.24±2.06b 21.10±3.36b 2.57±0.51fg
Fm 100±0a 20.45±2.85e 5.76±1.57ef 21.24±1.37b 3.47±0.23ef
Am 80.55±4.81b 26.97±2.03d 3.17±0.39f 16.98±1.51c 2.23±0.45fg
Cl 100±0a 35.32±4.69c 16.70±2.15b 21.96±2.01b 4.33±0.23de
Mix 100±0a 47.75±1.38b 10.41±0.52c 31.53±2.01a 5.60±1.40cd

Fig. 4

Relationship between AM fungal infection intensity and mycorrhizal growth and nutrition uptake response under normal and drought conditions"

Fig. 5

Effects of different inoculation treatments on antioxidant enzyme system of P. betulaefolia seedling leaves under drought stress"

Fig. 6

Principal coordinate analysis of AM fungal β diversity in root (left) and root soil (right) during normal and drought treatments"

Fig. 7

Composition of AM fungi in root (A) and root soil (B) after 0, 3 and 6 weeks of normal and drought mixed treatment NOR: Before drought treatment; NOR3: Normal treatment for 3 weeks; DRO3: Dry treatment for 3 weeks; NOR6: Normal treatment for 6 weeks; DRO6: Dry treatment for 6 weeks"

Table 3

Effects of drought and time on AM fungal abundance in roots and rhizosphere soil of P. betulaefolia seedlings"

Ri Fm Am Cl
F值
F value
P
P value
F值
F value
P
P value
F值
F value
P
P value
F值
F value
P
P value
根系
Root
处理 Treatment 10.312 0.012* 1.173 0.310 1.197 0.306 7.633 0.025*
时间 Time 4.728 0.061 1.230 0.300 2.361 0.163 5.201 0.052
处理×时间 Treatment × Time 2.327 0.166 1.173 0.310 3.623 0.093 1.143 0.361
根际土
Rhizosphere soil
处理 Treatment 94.245 0.000*** 0.333 0.580 3.045 0.119 20.335 0.002**
时间 Time 6.768 0.032* 0.333 0.580 6.899 0.030* 286.066 0.237
处理×时间 Treatment × Time 3.226 0.110 0.333 0.580 0.325 0.584 3.477 0.099

Fig. 8

AM fungi gDNA abundance in root (left) and root soil (right) after 6 weeks of normal and drought treatment No significant difference"

[1]
宗宇, 孙萍, 牛庆丰, 滕元文. 中国北方野生杜梨分布现状及其形态多样性评价. 果树学报, 2013, 30(6): 918-923.
ZONG Y, SUN P, NIU Q F, TENG Y W. Distribution situation and assessment of morphological diversity of wild Pyrus betulaefolia in Northern China. Journal of Fruit Science, 2013, 30(6): 918-923. (in Chinese)
[2]
李娇娇, 曾明. 丛枝菌根对植物根际逆境的生态学意义. 应用生态学报, 2020, 31(9): 3216-3226.

doi: 10.13287/j.1001-9332.202009.039
LI J J, ZENG M. Ecological significance of arbuscular mycorrhiza on plant rhizosphere stress. Chinese Journal of Applied Ecology, 2020, 31(9): 3216-3226. (in Chinese)
[3]
WIPF D, KRAJINSKI F, VAN TUINEN D, RECORBET G, COURTY P E. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. The New Phytologist, 2019, 223(3): 1127-1142.

doi: 10.1111/nph.2019.223.issue-3
[4]
JOHNSON N C, GIBSON K S. Understanding multilevel selection may facilitate management of arbuscular mycorrhizae in sustainable agroecosystems. Frontiers in Plant Science, 2021, 11: 627345.

doi: 10.3389/fpls.2020.627345
[5]
YAN Q X, LI X Y, XIAO X F, CHEN J Z, LIU J M, LIN C H, GUAN R T, WANG D P. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Cinnamomum migao by enhancing physio-biochemical responses. Ecology and Evolution, 2022, 12(7): e9091.
[6]
PÜSCHEL D, BITTERLICH M, RYDLOVÁ J, JANSA J. Drought accentuates the role of mycorrhiza in phosphorus uptake. Soil Biology and Biochemistry, 2021, 157: 108243.

doi: 10.1016/j.soilbio.2021.108243
[7]
HOANG D T T, RASHTBARI M, ANH L T, WANG S, TU D T, HIEP N V, RAZAVI B S. Mutualistic interaction between arbuscular mycorrhiza fungi and soybean roots enhances drought resistant through regulating glucose exudation and rhizosphere expansion. Soil Biology and Biochemistry, 2022, 171: 108728.

doi: 10.1016/j.soilbio.2022.108728
[8]
BOYER L R, BRAIN P, XU X M, JEFFRIES P. Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: Effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza, 2015, 25(3): 215-227.

doi: 10.1007/s00572-014-0603-6 pmid: 25186649
[9]
LE PIOUFLE O, GANOUDI M, CALONNE-SALMON M, BEN DHAOU F, DECLERCK S. Rhizophagus irregularis MUCL 41833 improves phosphorus uptake and water use efficiency in maize plants during recovery from drought stress. Frontiers in Plant Science, 2019, 10: 897.

doi: 10.3389/fpls.2019.00897
[10]
ABDALLA M, ALI AHMED M. Arbuscular mycorrhiza symbiosis enhances water status and soil-plant hydraulic conductance under drought. Frontiers in Plant Science, 2021, 12: 722954.

doi: 10.3389/fpls.2021.722954
[11]
WU Y H, WANG H, LIU M, LI B, CHEN X, MA Y T, YAN Z Y. Effects of native arbuscular mycorrhizae isolated on root biomass and secondary metabolites of Salvia miltiorrhiza Bge. Frontiers in Plant Science, 2021, 12: 617892.

doi: 10.3389/fpls.2021.617892
[12]
MIDDLETON E L, RICHARDSON S, KOZIOL L, PALMER C E, YERMAKOV Z, HENNING J A, SCHULTZ P A, BEVER J D. Locally adapted arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species. Ecosphere, 2015, 6(12): 1-16.
[13]
HART M, ANTUNES P, CHAUDHARY V, ABBOTT L. Fungal inoculants in the field: Is the reward greater than the risk? Functional Ecology, 2018, 32(1): 126-135.

doi: 10.1111/fec.2018.32.issue-1
[14]
JANOUŠKOVÁ M, KRAK K, VOSÁTKA M, PÜSCHEL D, ŠTORCHOVÁ H. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants. PLoS ONE, 2017, 12(7): e0181525.
[15]
AGANCHICH B, WAHBI S, YAAKOUBI A, EL-AOUOUAD H, BOTA J. Effect of arbuscular mycorrhizal fungi inoculation on growth and physiology performance of olive trees under regulated deficit irrigation and partial rootzone drying. South African Journal of Botany, 2022, 148: 1-10.

doi: 10.1016/j.sajb.2022.03.051
[16]
李侠, 叶诚诚, 张俊伶, 李海港, 王幼珊. 丛枝菌根真菌侵染指标与植物促生效应相关性分析. 中国农业大学学报, 2021, 26(10): 41-53.
LI X, YE C C, ZHANG J L, LI H G, WANG Y S. Correlation analysis between arbuscular mycorrhizal fungi colonization indices and plant growth promoting effect. Journal of China Agricultural University, 2021, 26(10): 41-53. (in Chinese)
[17]
王思雨, 魏涵, 陈科宇, 董强, 纪宝明, 张静. 丛枝菌根真菌(AMF)孢子,菌丝密度及侵染率定量测定方法. Bio-101, 2022: 2104253.
WANG S Y, WEI H, CHEN K Y, DONG Q, JI B M, ZHANG J. Practical methods for arbuscular mycorrhizal fungi spore density, hyphal density and colonization rate of AMF. Bio-101, 2022: 2104253. (in Chinese)
[18]
SCHWARZOTT D, SCHÜßLER A. A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores. Mycorrhiza, 2001, 10(4): 203-207.

doi: 10.1007/PL00009996
[19]
LEE J, LEE S S, YOUNG J P W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 2008, 65(2): 339-349.

doi: 10.1111/j.1574-6941.2008.00531.x pmid: 18631176
[20]
SIMON L, LALONDE M, BRUNS T D. Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Applied and Environmental Microbiology, 1992, 58(1): 291-295.

doi: 10.1128/aem.58.1.291-295.1992 pmid: 1339260
[21]
SATO K, SUYAMA Y, SAITO M, SUGAWARA K. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassland Science, 2005, 51(2): 179-181.

doi: 10.1111/grs.2005.51.issue-2
[22]
BABALOLA B J, LI J, WILLING C E, ZHENG Y, WANG Y L, GAN H Y, LI X C, WANG C, ADAMS C A, GAO C, GUO L D. Nitrogen fertilisation disrupts the temporal dynamics of arbuscular mycorrhizal fungal hyphae but not spore density and community composition in a wheat field. The New Phytologist, 2022, 234(6): 2057-2072.

doi: 10.1111/nph.v234.6
[23]
王紫瑄, 解甜甜, 王雅茹, 杨杰艳, 杨秀清. 丛枝菌根真菌(AMF)对蒙古沙冬青幼苗的促生特性及作用机制. 干旱区研究, 2023, 40(1): 78-89.
WANG Z X, XIE T T, WANG Y R, YANG J Y, YANG X Q. Growth promotion and mechanism of arbuscular mycorrhizal fungi (AMF) on Ammopiptanthus mongolicus seedlings. Arid Zone Research, 2023, 40(1): 78-89. (in Chinese)
[24]
骆礼华. 金佛山方竹林AM真菌调查及接种对其苗期生长的影响[D]. 贵阳: 贵州大学, 2018.
LUO L H. Effects of AM fungi on the growth of Chimonobambusa utilis[D]. Guiyang: Guizhou University, 2018. (in Chinese)
[25]
ZOU Y D, GAO Q, BI H Y, FAN J H. Effects of different arbuscular mycorrhizal fungi on growth and protective enzyme activity of Glycyrrhiza uralensis. Medicinal Plant, 2018, 9(02): 57-60, 64.
[26]
张金莲, 陈廷速, 刘金华, 康贻豪, 李冬萍, 汪茜, 宋娟, 钟泽橙, 温云英, 高日芳, 尚鹏祥, 张锡唐, 张师音, 程通, 胡柳, 罗文新, 葛胜祥, 夏宁邵. 层状近明球囊霉菌株HTJ2-60及其应用: 中国, CN113061535B. 2022-09-30.
ZHANG J L, CHEN T S, LIU J H, KANG Y H, LI D P, WANG Q, SONG J, ZHONG Z C, WEN Y Y, GAO R F, SHANG P X, ZHANG X T, ZHANG S Y, CHENG T, HU L, LUO W X, GE S X, XIA N C. Strain Claroideoglomus lamellosum HTJ2-60 and its application: China,CN113061535B, 2022-09-30. (in Chinese)
[27]
GUO X, WANG P, WANG X J, LI Y M, JI B M. Specific plant mycorrhizal responses are linked to mycorrhizal fungal species interactions. Frontiers in Plant Science, 2022, 13: 930069.

doi: 10.3389/fpls.2022.930069
[28]
BOWLES T M, JACKSON L E, CAVAGNARO T R. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Global Change Biology, 2018, 24(1): e171-e182.
[29]
FORCZEK S T, BUKOVSKÁ P, PÜSCHEL D, JANOUŠKOVÁ M, BLAŽKOVÁ A, JANSA J. Drought rearranges preferential carbon allocation to arbuscular mycorrhizal community members co-inhabiting roots of Medicago truncatula. Environmental and Experimental Botany, 2022, 199: 104897.

doi: 10.1016/j.envexpbot.2022.104897
[30]
张淑容, 贺学礼, 徐浩博, 刘春卯, 牛凯. 蒙古沙冬青根围AM和DSE真菌与土壤因子的相关性研究. 西北植物学报, 2013, 33(9): 1891-1897.
ZHANG S R, HE X L, XU H B, LIU C M, NIU K. Correlation study of AM and DSE fungi and soil factors in the rhizosphere of Ammopiptanthus mongolicus. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(9): 1891-1897. (in Chinese)
[31]
PÜSCHEL D, BITTERLICH M, RYDLOVÁ J, JANSA J. Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: A Gordian knot of roots and hyphae. Mycorrhiza, 2020, 30(2/3): 299-313.

doi: 10.1007/s00572-020-00949-9
[32]
刘海跃, 李欣玫, 张琳琳, 王姣姣, 贺学礼. 西北荒漠带花棒根际丛枝菌根真菌生态地理分布. 植物生态学报, 2018, 42(2): 252-260.

doi: 10.17521/cjpe.2017.0138
LIU H Y, LI X M, ZHANG L L, WANG J J, HE X L. Eco- geographical distribution of arbuscular mycorrhizal fungi associated with Hedysarum scoparium in the desert zone of northwestern China. Chinese Journal of Plant Ecology, 2018, 42(2): 252-260. (in Chinese)

doi: 10.17521/cjpe.2017.0138
[33]
KAUR S, CAMPBELL B J, SUSEELA V. Root metabolome of plant-arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal phenotype. The New Phytologist, 2022, 234(2): 672-687.

doi: 10.1111/nph.v234.2
[34]
张亚敏, 马克明, 李芳兰, 曲来叶. 干旱胁迫条件下AMF促进小马鞍羊蹄甲幼苗生长的机理研究. 生态学报, 2016, 36(11): 3329-3337.
ZHANG Y M, MA K M, LI F L, QU L Y. Arbuscular mycorrhizal fungi (AMF) promotes Bauhinia faberi var. microphylla seedling growth under drought stress conditions. Acta Ecologica Sinica, 2016, 36(11): 3329-3337. (in Chinese)
[35]
杨玉海, 李卫红, 陈亚宁, 朱成刚, 马建新. 接种摩西球囊霉胡杨幼株对渐进式土壤水分亏缺的响应. 干旱区地理, 2015, 38(1): 60-66.
YANG Y H, LI W H, CHEN Y N, ZHU C G, MA J X. Response of Populus euphratica seedling inoculated Glomus mosseae to progressive soil water deficit. Arid Land Geography, 2015, 38(1): 60-66. (in Chinese)
[36]
张中峰, 张金池, 黄玉清, 徐广平, 张德楠, 俞元春. 接种菌根真菌对青冈栎幼苗耐旱性的影响. 生态学报, 2016, 36(11): 3402-3410.
ZHANG Z F, ZHANG J C, HUANG Y Q, XU G P, ZHANG D N, YU Y C. Effects of mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings. Acta Ecologica Sinica, 2016, 36(11): 3402-3410. (in Chinese)
[37]
THONAR C, FROSSARD E, ŠMILAUER P, JANSA J. Competition and facilitation in synthetic communities of arbuscular mycorrhizal fungi. Molecular Ecology, 2014, 23(3): 733-746.

doi: 10.1111/mec.12625 pmid: 24330316
[38]
KIERS E T, DUHAMEL M, BEESETTY Y, MENSAH J A, FRANKEN O, VERBRUGGEN E, FELLBAUM C R, KOWALCHUK G A, HART M M, BAGO A, PALMER T M, WEST S A, VANDENKOORNHUYSE P, JANSA J, BÜCKING H. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 2011, 333(6044): 880-882.

doi: 10.1126/science.1208473 pmid: 21836016
[39]
SYMANCZIK S, COURTY P E, BOLLER T, WIEMKEN A, AL-YAHYA’EI M N. Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza, 2015, 25(8): 639-647.

doi: 10.1007/s00572-015-0638-3 pmid: 25860835
[40]
EMERY S M, BELL-DERESKE L, STAHLHEBER K A, GROSS K L. Arbuscular mycorrhizal fungal community responses to drought and nitrogen fertilization in switchgrass stands. Applied Soil Ecology, 2022, 169: 104218.

doi: 10.1016/j.apsoil.2021.104218
[41]
BLAŽKOVÁ A, JANSA J, PÜSCHEL D, VOSÁTKA M, JANOUŠKOVÁ M. Is mycorrhiza functioning influenced by the quantitative composition of the mycorrhizal fungal community? Soil Biology and Biochemistry, 2021, 157: 108249.

doi: 10.1016/j.soilbio.2021.108249
[42]
NACOON S, EKPRASERT J, RIDDECH N, MONGKOLTHANARUK W, JOGLOY S, VORASOOT N, COOPER J, BOONLUE S. Growth enhancement of sunchoke by arbuscular mycorrhizal fungi under drought condition. Rhizosphere, 2021, 17: 100308.

doi: 10.1016/j.rhisph.2021.100308
[43]
PRINGLE A, BEVER J D. Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. American Journal of Botany, 2002, 89(9): 1439-1446.

doi: 10.3732/ajb.89.9.1439
[1] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[2] WANG RongRong, CHEN TianPeng, YIN HaoJie, JIANG GuiYing. Response and Drip Irrigation Re-Watering Compensation Effect of Spring Wheat Roots to Drought Stress with Different Drought Tolerance Varieties [J]. Scientia Agricultura Sinica, 2023, 56(24): 4826-4841.
[3] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[4] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[5] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[6] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[7] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[8] LI Gang, BAI Yang, JIA ZiYing, MA ZhengYang, ZHANG XiangChi, LI ChunYan, LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[9] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[10] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[11] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[12] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[13] ZHANG XueLin,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng. Effects of Arbuscular Mycorrhizal Fungi on Soil N2O Emissions During Maize Growth Periods [J]. Scientia Agricultura Sinica, 2022, 55(10): 2000-2012.
[14] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[15] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!