Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (16): 3100-3109.doi: 10.3864/j.issn.0578-1752.2023.16.005

Previous Articles     Next Articles

Studies on the Suitable Nitrogen Supply Level of Rapeseed Blanket Seedling for Mechanized Transplanting

LI Jing(), QIAN Chen, LIN GuoBing, WANG Long, LI YiYang, ZHENG JingDong, YOU JingJing, LENG SuoHu, ZUO QingSong()   

  1. College of Agriculture, Yangzhou University/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu
  • Received:2022-12-02 Accepted:2023-02-06 Online:2023-08-16 Published:2023-08-18

Abstract:

【Objective】The density of rapeseed blanket seedling suitable for mechanized transplanting is large and individual plant is small, so the adversity-resistant ability of rapeseed blanket seedling is poor. In order to determine the appropriate nitrogen (N) supply level, the effects of different N levels on the agronomic traits, physiological indexes and survival rate after mechanized transplanting were studied.【Method】In 2020 and 2021, two rapeseed varieties, Qinyou 10 and Ningza 158, were planted. On the basis of spraying 0.25 g N/tray at the cotyledon stage, five nitrogen fertilizer levels (0, 0.5, 1.0, 1.5 and 2.0 g N/tray) were set at one-leaf and one-tip stage. The agronomic traits and physiological indexes were measured 30 days after sowing, and the survival rate was investigated 10 days after mechanized transplanting.【Result】At 30 days after sowing, the seedling numbers per tray ranged from 627 to 669, and the seedling numbers increased first and then decreased with the increase of N supply level. The increase of N supply level increased N contents, and the N content rates in shoots were higher than those in roots. The carbon (C) decreased in general as N level increased, and the C content rates in roots were higher than those in shoots. The variation range of C/N ratios in shoots and roots was 6.98-9.69 and 12.35-16.26, respectively, which showed a downward trend with the increase of N supply level. The plant height, leaf area, fresh weight, dry weight and moisture content increased gradually with the increase of N level, and among them, the increasing extent of the fresh weight in roots was the most. When N level increased from zero to 2.0 g N/tray, the fresh weight in roots per tray in Qinyou 10 and Ningza raised by 106.3% and 95.0%, respectively. The root collar diameter and survival rate after planting showed a trend of first increasing and then decreasing as increasing of N supply level. In the same year and variety experiment, the root collar diameter of 1.5 g N/tray treatment was the highest, and the survival rates ranged from 81.7% to 97.1%. The treatments of 1.0 and 1.5 g N/tray were higher, both above 95%, and there was no significant difference between them.【Conclusion】In the process of rapeseed blanket seedling cultivation, based on 0.25 g N/tray at cotyledon stage, the N supply level from 1.0 to 1.5 g N/tray at one-leaf and one-tip stage is easy to obtain strong seedlings. Under this management, the N content and C/N ratio were appropriate, and seedling number, root collar, survival rate after mechanized transplanting were high.

Key words: rapeseed blanket seedling, nitrogen supply level, C/N ratio, moisture content, seedling survival rate

Table 1

Seedling number per tray, agronomic traits of rapeseed blanket seedling on the 30th day after sowing of different treatments"

年份
Year
品种
Variety
供氮水平
Nitrogen level
(g/tray)
每盘存苗数
Seedling number
per tray
株高
Plant height
(cm)
单株叶面积
Leaf area per plant (cm2)
根颈直径
Root collar
diameter (mm)
2020 秦优10号
Qinyou 10
0 637±6fg 7.31±0.09gh 16.6±0.26i 1.82±0.01h
0.5 650±6d 8.21±0.08f 21.5±0.60h 1.93±0.04g
1.0 665±6ab 8.75±0.09e 25.1±0.61fg 2.15±0.04cde
1.5 668±5ab 8.98±0.07bc 26.9±1.26d 2.22±0.03ab
2.0 636±4fgh 9.38±0.06a 30.0±0.93b 2.11±0.04def
宁杂158
Ningza 158
0 640±5ef 7.45±0.09g 16.7±0.75i 1.83±0.06h
0.5 650±6d 8.25±0.08f 21.6±0.55h 1.94±0.03g
1.0 664±6ab 8.82±0.08de 25.9±0.70ef 2.16±0.04bcd
1.5 669±3a 9.03±0.11bc 28.2±0.48c 2.24±0.05a
2.0 627±3h 9.33±0.09a 31.2±0.74a 2.15±0.02cde
2021 秦优10号
Qinyou 10
0 630±8gh 7.21±0.05h 16.5±0.85i 1.81±0.01h
0.5 649±7de 8.25±0.09f 21.4±0.66h 1.92±0.05g
1.0 660±8bc 8.68±0.08e 24.6±0.55g 2.11±0.05def
1.5 663±7abc 8.90±0.16cd 26.2±0.92de 2.19±0.05abc
2.0 636±5fgh 9.34±0.10a 29.7±1.19b 2.09±0.06f
宁杂158
Ningza 158
0 636±7fgh 7.32±0.11gh 16.3±0.42i 1.83±0.02h
0.5 654±8cd 8.30±0.05f 21.2±0.60h 1.95±0.01g
1.0 665±4ab 8.77±0.04de 25.2±1.02fg 2.13±0.01cdef
1.5 665±4ab 9.08±0.07b 26.8±0.66d 2.22±0.04ab
2.0 634±6fgh 9.29±0.06a 29.7±1.41b 2.10±0.03ef
方差分析Analysis of variance
年份Year (Y) NS NS * NS
品种Variety (V) NS * * NS
氮肥水平Nitrogen level (N) ** ** ** **
年份×品种Y×V NS NS NS NS
年份×氮肥水平Y×N NS NS NS NS
品种×氮肥水平V×N NS NS * NS
年份×品种×氮肥水平Y×V×N NS NS NS NS

Table 2

C, N contents and C/N ratio of rapeseed blanket seedling on the 30th day after sowing of different treatments"

年份
Year
品种
Variety
供氮水平
Nitrogen level
(g/tray)
碳含量Carbon content (%) 氮含量Nitrogen content (%) 碳氮比C/N ratio
地上部
Shoot
地下部
Root
地上部
Shoot
地下部
Root
地上部
Shoot
地下部
Root
2020 秦优10号
Qinyou 10
0 41.72±0.12b 44.53±0.25a 4.37±0.09k 2.64±0.07i 9.55±0.23ab 16.26±0.51a
0.5 41.21±0.07c 43.58±0.26c 4.67±0.01i 2.86±0.04g 8.82±0.02d 14.98±0.14cd
1.0 40.47±0.21ef 43.10±0.46de 5.04±0.04fg 3.13±0.11de 8.02±0.11e 13.77±0.62fg
1.5 39.63±0.13g 42.68±0.50ef 5.25±0.03de 3.25±0.02c 7.55±0.06f 13.33±0.17hi
2.0 39.10±0.28hi 41.98±0.43hi 5.35±0.06cd 3.39±0.06b 7.31±0.11gh 12.77±0.14jk
宁杂158
Ningza 158
0 41.63±0.28b 44.57±0.05a 4.53±0.01j 2.86±0.02g 9.19±0.07c 15.08±0.07c
0.5 41.75±0.24b 43.60±0.21c 4.83±0.09h 3.06±0.03e 8.64±0.11d 14.03±0.17f
1.0 40.66±0.18de 43.37±0.31cd 5.15±0.04ef 3.23±0.06c 7.90±0.05e 13.45±0.27gh
1.5 40.23±0.11f 42.97±0.23def 5.41±0.05bc 3.37±0.09b 7.44±0.06fg 12.95±0.27ij
2.0 39.10±0.33hi 42.16±0.05gh 5.60±0.02a 3.51±0.02a 6.98±0.05i 12.35±0.08k
2021 秦优10号
Qinyou 10
0 42.23±0.27a 44.32±0.05a 4.36±0.07k 2.67±0.03hi 9.69±0.22a 16.00±0.16a
0.5 40.95±0.13cd 43.75±0.23bc 4.72±0.08i 2.96±0.03f 8.68±0.15d 14.55±0.08de
1.0 40.38±0.54ef 43.08±0.32de 4.99±0.10g 3.09±0.02e 8.09±0.06e 13.96±0.13f
1.5 39.72±0.28g 42.56±0.11fg 5.25±0.06de 3.24±0.04c 7.57±0.06f 13.34±0.21ghi
2.0 38.91±0.24i 41.69±0.28i 5.31±0.07cd 3.37±0.02b 7.33±0.12gh 12.74±0.02jk
宁杂158
Ningza 158
0 41.63±0.09b 44.36±0.29a 4.42±0.07jk 2.75±0.06h 9.41±0.12b 15.55±0.33b
0.5 41.24±0.17c 44.16±0.25ab 4.69±0.14i 3.08±0.07e 8.80±0.29d 14.13±0.26ef
1.0 40.99±0.26cd 42.96±0.14def 5.11±0.05f 3.20±0.03cd 8.02±0.04e 13.44±0.13gh
1.5 40.11±0.35f 42.61±0.18f 5.37±0.07bc 3.34±0.08b 7.47±0.04fg 12.94±0.27ij
2.0 39.39±0.21gh 42.05±0.23hi 5.47±0.08b 3.42±0.05b 7.20±0.12h 12.66±0.24jk
方差分析Analysis of variance
年份Year (Y) NS NS NS NS * NS
品种Variety (V) ** ** ** ** * **
氮肥水平Nitrogen level (N) ** ** ** ** ** **
年份×品种Y×V NS NS NS NS NS NS
年份×氮肥水平Y×N * NS NS NS NS NS
品种×氮肥水平V×N ** NS NS NS * NS
年份×品种×氮肥水平Y×V×N * NS NS NS NS NS

Table 3

Fresh weight, dry weight and moisture content of rapeseed blanket seedling on the 30th day after sowing of different treatments"

年份
Year
品种
Variety
供氮水平
Nitrogen level
(g/tray)
鲜重Fresh weight (mg/株) 干重Dry weight (mg/株) 水分含量Moisture content (%)
地上部
Shoot
地下部
Root
地上部
Shoot
地下部
Root
地上部
Shoot
地下部
Root
2020 秦优10号
Qinyou 10
0 538.2±9.1g 25.9±0.31f 73.6±1.60g 6.30±0.05k 86.3±0.11i 75.7±0.48ij
0.5 653.1±15.1f 33.3±0.33d 82.1±0.81e 7.68±0.13h 87.4±0.22fg 76.9±0.41gh
1.0 713.8±25.0e 41.5±0.38c 88.8±2.09cd 9.07±0.17f 87.5±0.47ef 78.1±0.53def
1.5 766.2±14.7c 44.2±0.35b 92.5±2.53b 9.33±0.19e 87.9±0.22cde 78.9±0.57d
2.0 855.3±1.4b 53.5±1.35a 99.9±1.95a 9.40±0.14de 88.3±0.22abc 82.4±0.71a
宁杂158
Ningza 158
0 549.8±20.4g 27.6±0.23e 71.8±2.17g 6.53±0.08ij 86.9±0.71gh 76.3±0.46hi
0.5 645.0±6.1f 32.4±0.22d 80.0±0.81ef 7.49±0.09h 87.6±0.22def 76.9±0.13gh
1.0 735.8±20.7de 41.8±0.57c 88.1±1.04d 9.42±0.10de 88.0±0.47abcde 77.5±0.45fg
1.5 768.2±12.5c 44.3±0.97b 91.5±1.30b 9.82±0.11ab 88.1±0.05abcd 77.8±0.56f
2.0 868.1±8.4ab 53.5±0.40a 99.5±2.86a 9.99±0.12a 88.5±0.39a 81.3±0.35bc
2021 秦优10号
Qinyou 10
0 544.6±7.6g 25.9±0.27f 72.0±1.11g 6.37±0.15jk 86.8±0.38hi 75.3±0.75j
0.5 636.9±9.4f 32.6±0.28d 80.5±1.37ef 7.53±0.09h 87.4±0.05fg 76.9±0.14gh
1.0 712.3±22.4e 41.3±0.26c 87.6±1.26d 9.09±0.08f 87.7±0.37def 78.0±0.14ef
1.5 755.8±7.2cd 43.5±0.87b 90.8±0.96bc 9.26±0.03ef 88.0±0.21bcde 78.7±0.41de
2.0 867.7±17.6ab 53.3±0.47a 100.6±0.53a 9.56±0.19cd 88.4±0.26abc 82.1±0.48ab
宁杂158
Ningza 158
0 549.8±4.4g 26.8±0.72ef 72.8±0.94g 6.58±0.05i 86.8±0.08hi 75.4±0.84j
0.5 647.0±0.5f 33.2±0.29d 78.2±1.28f 7.88±0.05g 87.9±0.21cde 76.3±0.15hi
1.0 715.8±7.5e 41.4±0.57c 87.3±0.22d 9.30±0.14e 87.8±0.15def 77.5±0.11fg
1.5 763.2±23.1c 43.9±1.12b 90.5±0.79bc 9.69±0.17bc 88.1±0.29abcd 77.9±0.40ef
2.0 885.0±9.1a 52.6±0.86a 101.8±2.55a 9.98±0.07a 88.5±0.34ab 81.0±0.19c
方差分析Analysis of variance
年份Year (Y) NS NS NS NS NS NS
品种Variety (V) ** NS NS ** ** *
氮肥水平Nitrogen level (N) ** ** ** ** ** **
年份×品种Y×V NS NS NS NS NS NS
年份×氮肥水平Y×N NS NS NS NS NS NS
品种×氮肥水平V×N NS * NS ** NS **
年份×品种×氮肥水平Y×V×N NS NS NS ** NS NS

Fig. 1

Seedling survival rate on the 10th day after mechanized transplanting of different treatments Error bar represents SD, and different lowercases on the column in the same year and variety experiment mean significant difference at P<0.05 level"

[1]
仇蕾. 机插稻连粳7号苗期氮肥对秧苗生长及产量的影响. 浙江农业科学, 2017, 58(7): 1125-1127.
QIU L. Effects of nitrogen fertilizer on seedling growth and yield of machine-transplanted rice Lianjing 7 at seedling stage. Journal of Zhejiang Agricultural Sciences, 2017, 58(7): 1125-1127. (in Chinese)
[2]
张馨月, 王寅, 陈健, 陈安吉, 王莉颖, 郭晓颖, 牛雅郦, 张星宇, 陈利东, 高强. 水分和氮素对玉米苗期生长、根系形态及分布的影响. 中国农业科学, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004.

doi: 10.3864/j.issn.0578-1752.2019.01.004
ZHANG X Y, WANG Y, CHEN J, CHEN A J, WANG L Y, GUO X Y, NIU Y L, ZHANG X Y, CHEN L D, GAO Q. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage. Scientia Agricultura Sinica, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.01.004
[3]
杨柳, 李絮花, 胡斌, 刘敏, 刘文博, 李金鑫, 张静, 王子凤. 轻度盐胁迫下施氮量对小麦苗期的生理响应. 中国土壤与肥料, 2020(3): 16-22.
YANG L, LI X H, HU B, LIU M, LIU W B, LI J X, ZHANG J, WANG Z F. Physiological response of nitrogen fertilization to wheat seedling under mild salt stress. Soil and Fertilizer Sciences in China, 2020(3): 16-22. (in Chinese)
[4]
ZUO Q S, KUAI J, ZHAO L, HU Z, WU J S, ZHOU G S. The effect of sowing depth and soil compaction on the growth and yield of rapeseed in rice straw returning field. Field Crops Research, 2017, 203: 47-54.

doi: 10.1016/j.fcr.2016.12.016
[5]
王慧, 卜容燕, 韩上, 程文龙, 李敏, 唐杉, 胡现荣, 武际, 郭子琪, 周锦寒. 有机肥配施化肥对直播油菜产量及养分吸收利用的影响. 中国土壤与肥料, 2021(6): 156-165.
WANG H, BU R Y, HAN S, CHENG W L, LI M, TANG S, HU X R, WU J, GUO Z Q, ZHOU J H. The effects of chemical fertilizer combined with organic fertilizer on the yields, nutrient uptake and utilization of direct-seeding rapeseed. Soil and Fertilizer Sciences in China, 2021(6): 156-165. (in Chinese)
[6]
王俊林. 发展油菜种植机械化关键技术推广. 农业机械, 2021(2): 69-71.
WANG J L. Promotion of key technologies for the development of rapeseed planting mechanization. Farm Machinery, 2021(2): 69-71. (in Chinese)
[7]
李娟, 王永华, 宋丽华, 万治国, 敖友平. 油菜全程机械化轻简栽培技术探讨. 农业开发与装备, 2021(3): 24-25.
LI J, WANG Y H, SONG L H, WAN Z G, AO Y P. Discussion on the whole mechanization and simple cultivation technology of rapeseed. Agricultural Development & Equipments, 2021(3): 24-25. (in Chinese)
[8]
傅寿仲, 朱耕如. 江苏油作科学. 南京: 江苏科学技术出版社, 1995: 309-314.
FU S Z, ZHU G R. Oilseed Crops Science and Technology in Jiangsu Province. Nanjing: Jiangsu Science & Technology Publishing House, 1995: 309-314. (in Chinese)
[9]
郭保卫, 陈厚存, 张春华, 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 邢琳, 管文文, 黄幸福, 杨雄. 水稻抛栽秧苗立苗中的形态与生理变化. 作物学报, 2010, 36(10): 1715-1724.

doi: 10.3724/SP.J.1006.2010.01715
GUO B W, CHEN H C, ZHANG C H, WEI H Y, ZHANG H C, DAI Q G, HUO Z Y, XU K, XING L, GUAN W W, HUANG X F, YANG X. Morphological and physiological changes in seedling standing and establishment of broadcasted rice seedlings. Acta Agronomica Sinica, 2010, 36(10): 1715-1724. (in Chinese)
[10]
秦华东, 张玉, 肖巧珍, 江立庚, 徐世宏, 丁成泉, 杨彩铃, 汪妮娜. 耕作方式对不同抛秧水稻品种立苗期根系生长的影响. 热带作物学报, 2013, 34(6): 1029-1032.
QIN H D, ZHANG Y, XIAO Q Z, JIANG L G, XU S H, DING C Q, YANG C L, WANG N N. Effect of tillage pattern on root growth of different rice cultivars during seedling standing period. Chinese Journal of Tropical Crops, 2013, 34(6): 1029-1032. (in Chinese)
[11]
ZUO Q S, WANG L, ZHENG J D, YOU J J, YANG G, LENG S H, LIU J Y. Effects of uniconazole rate on agronomic traits and physiological indexes of rapeseed blanket seedling. Oil Crop Science, 2020, 5(4): 198-204.

doi: 10.1016/j.ocsci.2020.12.003
[12]
MA B L, SUBEDI K D, DWYER L M. Timing and method of 15nitrogen-labeled fertilizer application on grain protein and nitrogen use efficiency of spring wheat. Journal of Plant Nutrition, 2006, 29(3): 469-483.

doi: 10.1080/01904160500525065
[13]
王继明, 宋海星, 张玲, 张振华, 官春云, 荣湘民, 刘强. 肥料运筹方式对冬油菜生长及产量的影响. 土壤, 2012, 44(2): 232-236.
WANG J M, SONG H X, ZHANG L, ZHANG Z H, GUAN C Y, RONG X M, LIU Q. Effects of fertilizer application patterns on growth and seeds yield of winter oilseed rape (Brassica napus L.). Soils, 2012, 44(2): 232-236. (in Chinese)
[14]
孙永健, 马均, 孙园园, 徐徽, 严奉君, 代邹, 蒋明金, 李玥. 水氮管理模式对杂交籼稻冈优527群体质量和产量的影响. 中国农业科学, 2014, 47(10): 2047-2061. doi: 10.3864/j.issn.0578-1752.2014.10.019.

doi: 10.3864/j.issn.0578-1752.2014.10.019
SUN Y J, MA J, SUN Y Y, XU H, YAN F J, DAI Z, JIANG M J, LI Y. Effects of water and nitrogen management patterns on population quality and yield of hybrid rice Gangyou 527. Scientia Agricultura Sinica, 2014, 47(10): 2047-2061. doi: 10.3864/j.issn.0578-1752.2014.10.019. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2014.10.019
[15]
李鹏程, 董合林, 刘爱忠, 刘敬然, 李如义, 孙淼, 李亚兵, 毛树春. 应用15N研究氮肥运筹对棉花氮素吸收利用及产量的影响. 植物营养与肥料学报, 2015, 21(3): 590-599.
LI P C, DONG H L, LIU A Z, LIU J R, LI R Y, SUN M, LI Y B, MAO S C. Effects of nitrogen fertilizer application strategy on N uptake, utilization and yield of cotton using 15N trace technique. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 590-599. (in Chinese)
[16]
MA Q, WANG M Y, ZHENG G L, YAO Y, TAO R R, ZHU M, DING J F, LI C Y, GUO W S, ZHU X K. Twice-split application of controlled-release nitrogen fertilizer met the nitrogen demand of winter wheat. Field Crops Research, 2021, 267: 108163.

doi: 10.1016/j.fcr.2021.108163
[17]
郭丽璇, 耿国涛, 任涛, 李小坤, 丛日环, 鲁剑巍. 施肥管理对油菜种子萌发特性的影响. 中国土壤与肥料, 2020(3): 63-68.
GUO L X, GENG G T, REN T, LI X K, CONG R H, LU J W. Effect of fertilization management on germination characteristics of winter oilseed rape (Brassica napus L.). Soil and Fertilizer Sciences in China, 2020(3): 63-68. (in Chinese)
[18]
李慧, 佟秋成, 陈魁, 何玉忠, 张国荣. 分层侧深施肥播种机的研发. 中国农机化学报, 2013, 34(5): 105-108.
LI H, TONG Q C, CHEN K, HE Y Z, ZHANG G R. Research and development of layered and deep side fertilizing & precision seeding machine. Journal of Chinese Agricultural Mechanization, 2013, 34(5): 105-108. (in Chinese)
[19]
米国华, 霍跃文, 曾爱军, 李刚华, 王秀, 张福锁. 作物养分管理的农机农艺结合技术研究进展. 中国农业科学, 2022, 55(21): 4211-4224. doi: 10.3864/j.issn.0578-1752.2022.21.009.

doi: 10.3864/j.issn.0578-1752.2022.21.009
MI G H, HUO Y W, ZENG A J, LI G H, WANG X, ZHANG F S. Integration of agricultural machinery and agronomic techniques for crop nutrient management in China. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224. doi: 10.3864/j.issn.0578-1752.2022.21.009. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.21.009
[20]
周丽燕, 黄影华, 张善炫, 郭之瑶, 洪瑞霞, 王轶林, 夏丽莎, 付璐, 李艳大, 陈青春. 不同氮肥调控对水稻分蘖数和叶面积指数的影响. 湖北农业科学, 2020, 59(7): 33-37.
ZHOU L Y, HUANG Y H, ZHANG S X, GUO Z Y, HONG R X, WANG Y L, XIA L S, FU L, LI Y D, CHEN Q C. Effects of different nitrogen fertilizer regulation on tiller number and leaf area index of rice. Hubei Agricultural Sciences, 2020, 59(7): 33-37. (in Chinese)
[21]
吴鹏, 李福建, 于倩倩, 赵伟, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 耕作与播种方式、密度和施氮量对稻茬小麦幼苗质量的影响. 麦类作物学报, 2021, 41(1): 72-80.
WU P, LI F J, YU Q Q, ZHAO W, ZHU M, LI C Y, ZHU X K, DING J F, GUO W S. Effect of tillage and seeding method, planting density, and nitrogen rate on seedling quality of wheat following rice. Journal of Triticeae Crops, 2021, 41(1): 72-80. (in Chinese)
[22]
陈杨, 王磊, 白由路, 卢艳丽, 倪露, 王玉红, 徐孟泽. 有效积温与不同氮磷钾处理夏玉米株高和叶面积指数定量化关系. 中国农业科学, 2021, 54(22): 4761-4777. doi: 10.3864/j.issn.0578-1752.2021.22.005.

doi: 10.3864/j.issn.0578-1752.2021.22.005
CHEN Y, WANG L, BAI Y L, LU Y L, NI L, WANG Y H, XU M Z. Quantitative relationship between effective accumulated temperature and plant height & leaf area index of summer maize under different nitrogen, phosphorus and potassium levels. Scientia Agricultura Sinica, 2021, 54(22): 4761-4777. doi: 10.3864/j.issn.0578-1752.2021.22.005. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.22.005
[23]
田效琴, 李卓, 刘永红. 密度和施氮量对油菜生长发育及产量的影响. 中国土壤与肥料, 2018(3): 26-35.
TIAN X Q, LI Z, LIU Y H. Effects of densities and nitrogen fertilizer rates on growth and yield of rapeseed. Soil and Fertilizer Sciences in China, 2018(3): 26-35. (in Chinese)
[24]
WANG Z K, WANG B, KUAI J, LI Z, BAI R, ZHOU G S. Planting density and variety intercropping improve organ biomass distribution of rapeseed to alleviate the trade-off between yield and lodging resistance. Crop Science, 2021, 61(4): 2696-2712.

doi: 10.1002/csc2.v61.4
[25]
KHAN S, ANWAR S, KUAI J, ULLAH S, FAHAD S, ZHOU G S. Optimization of nitrogen rate and planting density for improving yield, nitrogen use efficiency, and lodging resistance in oilseed rape. Frontiers in Plant Science, 2017, 8: 532.

doi: 10.3389/fpls.2017.00532 pmid: 28536581
[26]
李小勇, 顾炽明, 刘康, 廖星, 黄威, 杨志远, 秦璐. 施氮量对迟播油菜氮素利用和产量品质的影响. 中国农业科学, 2021, 54(17): 3726-3736. doi: 10.3864/j.issn.0578-1752.2021.17.014.

doi: 10.3864/j.issn.0578-1752.2021.17.014
LI X Y, GU C M, LIU K, LIAO X, HUANG W, YANG Z Y, QIN L. Effects of nitrogen application rate on nitrogen use efficiency, yield and quality of late sowing rapeseed. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736. doi: 10.3864/j.issn.0578-1752.2021.17.014. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.17.014
[27]
韩自行, 张长生, 王积军, 张冬晓, 汤松, 陈爱武, 周广生, 胡立勇, 吴江生, 傅廷栋. 氮肥运筹对稻茬免耕油菜农艺性状及产量的影响. 作物学报, 2011, 37(12): 2261-2268.

doi: 10.3724/SP.J.1006.2011.02261
HAN Z H, ZHANG C S, WANG J J, ZHANG D X, TANG S, CHEN A W, ZHOU G S, HU L Y, WU J S, FU T D. Effects of nitrogen application on agronomic traits and yield of rapeseed in no-tillage rice stubble field. Acta Agronomica Sinica, 2011, 37(12): 2261-2268. (in Chinese)

doi: 10.3724/SP.J.1006.2011.02261
[28]
左青松, 刘浩, 蒯婕, 冯倩南, 冯云艳, 张含笑, 刘靖怡, 杨光, 周广生, 冷锁虎. 氮肥和密度对毯状苗移栽油菜碳氮积累、运转和利用效率的影响. 中国农业科学, 2016, 49(18): 3522-3531. doi: 10.3864/j.issn.0578-1752.2016.18.006.

doi: 10.3864/j.issn.0578-1752.2016.18.006
ZUO Q S, LIU H, KUAI J, FENG Q N, FENG Y Y, ZHANG H X, LIU J Y, YANG G, ZHOU G S, LENG S H. Effects of nitrogen and planting density on accumulation, translocation and utilization efficiency of carbon and nitrogen in transplanting rapeseed with blanket seedling. Scientia Agricultura Sinica, 2016, 49(18): 3522-3531. doi: 10.3864/j.issn.0578-1752.2016.18.006. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.18.006
[29]
WANG Z, LI J S, LI Y F. Effects of drip system uniformity and nitrogen application rate on yield and nitrogen balance of spring maize in the North China Plain. Field Crops Research, 2014, 159: 10-20.

doi: 10.1016/j.fcr.2014.01.006
[30]
林宝刚, 郝鹏飞, 任韵, 怀燕, 张慧, 薛波文, 华水金. 施氮量和采收株高对油菜薹外观性状、养分积累和氨基酸组分含量的影响. 核农学报, 2022, 36(12): 2474-2481.

doi: 10.11869/j.issn.100-8551.2022.12.2474
LIN B G, HAO P F, REN Y, HUAI Y, ZHANG H, XUE B W, HUA S J. Effect of nitrogen application rates and harvesting plant heights on appearance traits, nutrient accumulation, and amino acid composition in young stem of rapeseed. Journal of Nuclear Agricultural Sciences, 2022, 36(12): 2474-2481. (in Chinese)

doi: 10.11869/j.issn.100-8551.2022.12.2474
[31]
鲁一薇, 崔纪菡, 郭帅, 李顺国, 校诺娅, 刘寒双, 刘猛, 夏雪岩. 缺氮胁迫对谷子幼苗生长发育的影响. 中国农业大学学报, 2022, 27(3): 18-25.
LU Y W, CUI J H, GUO S, LI S G, XIAO N Y, LIU H S, LIU M, XIA X Y. Effects of nitrogen deficiency stress on the growth of foxtail millet seedlings. Journal of China Agricultural University, 2022, 27(3): 18-25. (in Chinese)
[32]
HAO X, JIA J D, MI J Q, YANG S, KHATTAK A M, ZHENG L H, GAO W L, WANG M J. An optimization model of light intensity and nitrogen concentration coupled with yield and quality. Plant Growth Regulation, 2020, 92(2): 319-331.

doi: 10.1007/s10725-020-00641-0
[33]
WANG X L, YU W J, ZHOU Q, HAN R F, HUANG D F. Metabolic response of pakchoi leaves to amino acid nitrogen. Journal of Integrative Agriculture, 2014, 13(4): 778-788.

doi: 10.1016/S2095-3119(13)60622-X
[34]
任万军, 卢庭启, 赵中操, 杨文钰. 水稻秧苗发根力与一些碳氮营养生理特性的关系. 浙江大学学报(农业与生命科学版), 2011, 37(1): 103-111.
REN W J, LU T Q, ZHAO Z C, YANG W Y. Relationship between rooting ability and some physiological characteristics about carbon and nitrogen nutrition in rice seedlings. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(1): 103-111. (in Chinese)
[35]
徐年龙, 于洪喜, 叶仁宏, 王升, 王飞, 徐梦彬, 周娜娜, 王振. 播期和栽插方式对水稻南粳9108产量和品质的影响. 大麦与谷类科学, 2020, 37(1): 15-21.
XU N L, YU H X, YE R H, WANG S, WANG F, XU M B, ZHOU N N, WANG Z. Effects of sowing date and transplanting method on the yield and quality of the rice cultivar Nanjing 9108. Barley and Cereal Sciences, 2020, 37(1): 15-21. (in Chinese)
[36]
凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000: 432-438.
LING Q H. The Quality of Crop Population. Shanghai: Shanghai Science and Technology Press, 2000: 432-438. (in Chinese)
[37]
杨文钰, 王振. 作物栽培学各论 (南方本, 2版). 北京: 中国农业出版社, 2011: 227-233.
YANG W Y, TU N M. Various Exposition to Crop Cultivation (Southern Version, 2nd ed). Beijing: China Agriculture Press, 2011: 227-233. (in Chinese)
[1] LI Jin, REN LiJun, LI XiaoYu, BI RunXue, JIN XinXin, YU Na, ZHANG YuLing, ZOU HongTao, ZHANG YuLong. Effects of Different Straw Returning Patterns on Soil CO2 Emission and Carbon Balance in Maize Field [J]. Scientia Agricultura Sinica, 2023, 56(14): 2738-2750.
[2] YU Ru, SONG JiaShen, ZHANG HongYuan, CHANG FangDi, WANG YongQing, WANG XiQuan, WANG Jing, WANG WeiNi, LI YuYi. Effects of Straw Interlayer Combined with Spring Irrigation on Saline- Alkali Soil Respiration and Its Temperature Sensitivity in Hetao Irrigation District [J]. Scientia Agricultura Sinica, 2023, 56(12): 2341-2353.
[3] LI Ran, XU MingGang, SUN Nan, WANG JinFeng, WANG Fei, LI JianHua. Dynamics Characteristic of Straw Decomposition and Nutrient Release Under Different C/N Ratio [J]. Scientia Agricultura Sinica, 2023, 56(11): 2118-2128.
[4] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[5] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[6] JIN XiuKuan, MA MaoTing, ZHAO TongKe, AN ZhiZhuang, JIANG LingLing. Effects of Nitrogen Application on Yield, Water and Nitrogen Use Efficiency of Winter Wheat Under Supplemental Irrigation Based on Measured Soil Moisture Content [J]. Scientia Agricultura Sinica, 2018, 51(7): 1334-1344.
[7] DU Bin, HU XiaoTao, WANG WenE, MA LiHua, ZHOU ShiWei. Stem Flow Influencing Factors Sensitivity Analysis and Stem Flow Model Applicability in Filling Stage of Alternate Furrow Irrigated Maize [J]. Scientia Agricultura Sinica, 2018, 51(2): 233-245.
[8] WanXu ZHANG, Bo MING, KeRu WANG, ChaoWei LIU, Peng HOU, JiangLu CHEN, GuoQiang ZHANG, JingJing YANG, ShuLing CHE, RuiZhi XIE, ShaoKun LI. Analysis of Sowing and Harvesting Allocation of Maize Based on Cultivar Maturity and Grain Dehydration Characteristics [J]. Scientia Agricultura Sinica, 2018, 51(10): 1890-1898.
[9] LuLu LI, Bo MING, Shang GAO, RuiZhi XIE, Peng HOU, KeRu WANG, ShaoKun LI. Study on Grain Dehydration Characters of Summer Maize and Its Relationship with Grain Filling [J]. Scientia Agricultura Sinica, 2018, 51(10): 1878-1889.
[10] LI LuLu, WANG KeRu, XIE RuiZhi, MING Bo, ZHAO Lei, LI ShanShan, HOU Peng, LI ShaoKun. Corn Kernel Weight and Moisture Content After Physiological Maturity in Field [J]. Scientia Agricultura Sinica, 2017, 50(11): 2052-2060.
[11] LI LuLu, LEI XiaoPeng, XIE RuiZhi, WANG KeRu, HOU Peng, ZHANG FengLu, LI ShaoKun. Analysis of Influential Factors on Mechanical Grain Harvest Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2017, 50(11): 2044-2051.
[12] CHAI ZongWen, WANG KeRu, GUO YinQiao, XIE RuiZhi, LI LuLu, MING Bo, HOU Peng, LIU ChaoWei, CHU ZhenDong, ZHANG WanXu, ZHANG GuoQiang, LIU GuangZhou, LI ShaoKun. Current Status of Maize Mechanical Grain Harvesting and Its Relationship with Grain Moisture Content [J]. Scientia Agricultura Sinica, 2017, 50(11): 2036-2043.
[13] WANG KeRu, LI ShaoKun. Analysis of Influencing Factors on Kernel Dry-Down-Rate of Maize Hybrids [J]. Scientia Agricultura Sinica, 2017, 50(11): 2027-2035.
[14] WANG KeRu, LI ShaoKun. Progresses in Research on Grain Broken Rate by Combine Harvesting Maize [J]. Scientia Agricultura Sinica, 2017, 50(11): 2018-2026.
[15] . Effects of Nitrogen and Planting Density on Accumulation, Translocation and Utilization Efficiency of Carbon and Nitrogen in Transplanting Rapeseed with Blanket Seedling [J]. Scientia Agricultura Sinica, 2016, 49(18): 3522-3531.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!