Scientia Agricultura Sinica

Previous Articles    

Standardized Establishment and Improvement of Accounting System of Agriculture Greenhouse Gas Emission

ZHANG WeiJian1,2*, SHANG ZiYing1,2, ZHANG Jun1,2, YAN ShengJi1, DENG AiXing1,ZHANG Xin1,ZHENG ChengYan1, SONG ZhenWei1,2 #br#   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081; 2Center of Carbon Peak and Carbon Neutralization, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Published:2023-03-15

Abstract: Agriculture is not only the dominant source of human food and clothing, but also the potential sector of global anthropogenic greenhouse gas (GHG) emissions mitigation, especially methane (CH4) and nitrous oxide (N2O). To standardize GHG accounting is an urgent need for agricultural carbon emission inventory compilation, carbon trading of emission reduction verification and low-carbon agricultural product certification, as well as the basis for the policy making and technology selection of agricultural carbon reduction and sequestration. This is of great significance for the green-low-carbon and high-quality development of agriculture. Based on a systematic review of the relevant global specifications, guidelines, methodologies and standards of agricultural GHG accounting, this paper aims to address the problems of imperfect monitoring and reporting systems, unsystematic accounting and calculating methods, and uncertain accounting results, by providing the following four suggestions for the establishment and improvement of agricultural GHG accounting systems. Firstly, we should further establish and improve the institutional system of the accounting system, to better clarify the subject of the main responsibility. On the existing basis of China's agricultural statistics and non-point source pollution monitoring and reporting systems, we should strengthen the construction of agricultural GHG emission monitoring (M), reporting (R) and verifying (V) system (i.e. MRV system); and supplement and improve the policy making and institutional setting, so as to clarify the main responsibilities of agricultural GHG statistical accounting and carbon reduction and sequestration. Secondly, we should further supplement and improve the accounting standards and methodologies. According to the newly issued international standards and methodologies, and the actual situation of China’s agricultural production and future development, we need to revise the agricultural components of China's Guidelines of Provincial GHG Emission Inventories. For example, the farmland carbon sequestrations of biochar application, ecological farm and well-facilitated farmland construction, and crop straw comprehensive utilization, as well as the carbon emissions of lime and urea application, ruminant livestock feeding and freshwater aquaculture need to be supplemented into the guidelines; the accounting standards and methods of agricultural indirect GHG emissions need to be revised, and some new CCER (Chinese certified emission reduction) methodologies need to be developed for agricultural carbon trading. Thirdly, the database needs to be further renewed and upgraded. We need to strengthen scientific and technological innovations and accounting data accumulation of agricultural carbon reduction and sequestration, to renew and upgrade the basic data, action data and emission factor data of the existing accounting systems in combination with field monitoring, model estimation and literature synthesis. The fourthly, at last, it is also necessary to develop the application software supporting the accounting standards and methodologies, and carry out science popularization, technical training and application demonstration. Our suggestions can provide references for the guideline revision of agricultural greenhouse gas emission inventories, and supports to the methodology development for trading verification of agricultural voluntary emission reduction and carbon footprint assessment of low-carbon agricultural product certification.


Key words: food security, climate change, green and low-carbon development, carbon emission inventory, carbon trading for emission reduction, MRV methodologies

[1] ZHANG ZhiLiang, HE ZhiHao, RU XiaoYa, JIANG TengCong, HE YingBin, FENG Hao, YU Qiang, HE JianQiang. Influence of Future Climate Change on the Climate Suitability of Potato Cultivation in China [J]. Scientia Agricultura Sinica, 2023, 56(18): 3530-3542.
[2] ZHANG WenJing, ZHAO Jin, CUI WenQian, LI ManYao, LI E, GONG XiaoYa, YANG XiaoGuang. Effects of Changing Normal and Extreme Climate States on Maize Meteorological Yield in Northeast China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1859-1870.
[3] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[4] GUO ShiBo, ZHANG FangLiang, ZHANG ZhenTao, ZHOU LiTao, ZHAO Jin, YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[5] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[6] YANG ShiQi. Thought of Pollution Comprehensive Prevention and Control System of Non-Point Sources Based on National Food Security [J]. Scientia Agricultura Sinica, 2022, 55(17): 3380-3394.
[7] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[8] ZHANG WeiJian, YAN ShengJi, ZHANG Jun, JIANG Yu, DENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[9] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[10] WANG Fei,SUN ZengGuang,YIN Fei,GUO BinBin,LIU Ling,JIAO NianYuan. Effects of Elevated Temperature and CO2 on the Photosynthetic Characteristics of Intercropping Maize [J]. Scientia Agricultura Sinica, 2021, 54(1): 58-70.
[11] KaiYuan GONG, Liang HE, DingRong WU, ChangHe LÜ, Jun LI, WenBin ZHOU, Jun DU, Qiang YU. Spatial-Temporal Variations of Photo-Temperature Potential Productivity and Yield Gap of Highland Barley and Its Response to Climate Change in the Cold Regions of the Tibetan Plateau [J]. Scientia Agricultura Sinica, 2020, 53(4): 720-733.
[12] WANG MingLei,SHI WenJiao. Spatial-Temporal Changes of Newly Cultivated Land in Northern China and Its Zoning Based on Driving Factors [J]. Scientia Agricultura Sinica, 2020, 53(12): 2435-2449.
[13] SUN JianFei,ZHENG JuFeng,CHENG Kun,YE Yi,ZHUANG Yuan,PAN GenXing. Quantifying Carbon Sink by Biochar Compound Fertilizer Project for Domestic Voluntary Carbon Trading in Agriculture [J]. Scientia Agricultura Sinica, 2018, 51(23): 4470-4484.
[14] ZHANG ZhenTao, YANG XiaoGuang, GAO JiQing, WANG XiaoYu, BAI Fan, SUN Shuang, LIU ZhiJuan, MING Bo, XIE RuiZhi, WANG KeRu, LI ShaoKun. Analysis of Suitable Sowing Date for Summer Maize in North China Plain Under Climate Change [J]. Scientia Agricultura Sinica, 2018, 51(17): 3258-3274.
[15] JING LiQuan, HU ShaoWu, MU HaiRong, WANG YunXia, YANG LianXin. Change of Atmospheric Environment Leads to Deterioration of Rice Quality [J]. Scientia Agricultura Sinica, 2018, 51(13): 2462-2475.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!