Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (7): 1459-1472.doi: 10.3864/j.issn.0578-1752.2020.07.014

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Phenolic Content, Bioavailability and Antioxidant Activity of Carambola

MuKang LUO1,2,XuChao JIA2,RuiFen ZHANG2,Lei LIU2,LiHong DONG2,JianWei CHI2,YaJuan BAI2,MingWei ZHANG2   

  1. 1. College of Life Science, Yangtze University, Jingzhou 434020, Hubei
    2. Sericultura & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610;
  • Received:2019-08-21 Accepted:2019-10-22 Online:2020-04-01 Published:2020-04-14

Abstract: 【Objective】 The aim of this study was to explore the phenolic composition, content, bioaccessibility and antioxidant activity of phenolic compounds in different carambola fruit varieties, so as to provide reference for the fresh consumption and deep processing of carambola. 【Method】 Phenolic compounds of three cultivars, including Guangzhou Hong cultivar (GZ), Xiangmi cultivar (XM), and Taiwan Misi cultivar (TW), were determined by high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Their antioxidant capacity was evaluated by ABTS + radical scavenging capacity (ABTS) and oxygen radical absorbance capacity assay (ORAC). The change of total phenol, flavonoids, mono-phenol and their antioxidant capacity, as well as their bioaccessibility were analyzed during in vitro simulated gastrointestinal digestion. 【Result】 Three phenolic acids (protocatechuic acid, p-coumaric acid and ferulic acid) and three flavonoids (procyanidin B2, epicatechin and isoquercetin) were detected from the extracts of carambola fruit, among which proanthocyanin B2 and epicatechin were the predominant phenolics. The variation ranges of total phenolics and total flavonoids in tested varieties were 234.41-293.30 mg GAE/100 g and 165.75-278.97 mg CE/100 g, respectively. After simulated gastric digestion, the contents of phenolics and flavonoids in carambola digestive juice were 151.57-180.45 mg GAE/100 g FW and 113.06-164.45 mg CE/100 g FW, respectively. And their bioaccessibility were 54.05%-76.98% and 47.58%- 93.88%, respectively. After further intestinal digestion, the content of phenolic compounds released into the digestive fluid was reduced. The phenolics and flavonoids contents were 116.64-155.76 mg GAE/100 g FW and 78.47-148.44 mg CE/100 g FW, respectively, and their bioaccessibility were 46.57%-66.45% and 40.12%-84.75%, respectively. The contents of procyanidins B2 and epicatechin released into digestive fluid were 56.60%-87.54% and 65.33%-85.92% with gastrointestinal digestion and these only accounted for 51.90%-80.94% and 32.81%-37.50% of carambola fruit extract, respectively. The antioxidant capacity of ABTS and ORAC of digestive juice of three carambola fruit with gastric digestion were 97.56%, 102.42%, 92.36% and 122.73%, 118.50% and 107.14%, respectively. After further intestinal digestion, their antioxidant capacity of ABTS and ORAC were reduced by 12.33%-26.60% and 37.95%-43.28%, respectively. 【Conclusion】 Protocatechuic acid, p-coumaric acid, ferulic acid, procyanidin B2, epicatechin and isoquercetin were the main phenolic substances in carambola, and the contents of procyanidin B2 and epicatechin were the highest among them. After simulated gastric digestion, a high content of phenolic compounds in the digestive juice were detected, while their contents were significantly reduced with intestinal digestion.

Key words: carambola, phenolic substances, flavonoid, bioaccessibility, antioxidant

Fig. 1

Photographs of three varieties of carambola"

Table 1

Precursor and products ions of authentic standards used in the LC-MS/MS analysis"

化合物
Compound
保留时间
Retention time (min)
特征离子Characteristic ion (m/z) 碰撞能量Collision energy (V)
1 2 1 2
原儿茶酸 Protocatechuic acid 2.59 153.06→109.11 153.06→91.18 12.99 23.90
原花青素B2 Proanthocyanidin B2 5.90 577.15→407.04 577.15→425.06 20.87 12.98
表儿茶素 Epicatechin 7.88 289.15→245.04 289.15→203.04 13.49 17.74
对香豆酸 p-Coumaric acid 9.66 163.06→119.11 163.06→93.15 12.33 29.47
阿魏酸 Ferulic acid 12.13 193.06→134.11 193.06→178.00 14.75 11.47
异槲皮苷 Isoquercitrin 15.23 463.15→300.00 463.15→301.01 25.27 19.96

Fig. 2

The LC-ESI-MS spectra of carambola methanol extracts and some identified phenolic compounds"

Fig. 3

The total contents of phenolics and flavonoids in three varieties of carambola Different letters mean significant differences (P<0.05). The same as below"

Table 2

The Content of monomeric phenols in carambola"

品种
Variety
含量 Content (mg/100 g FW)
广州红杨桃 GZ 香蜜杨桃 XM 台湾蜜丝杨桃 TW
酚酸
Phenolic acid
原儿茶酸 Protocatechuic acid 1.25±0.30b ND 1.49±0.00b
对香豆酸 p-Coumaric acid 0.98±0.02a 1.23±0.05b 0.89±0.02a
阿魏酸 Ferulic acid 1.28±0.02ab 1.40±0.03b 1.20±0.01a
黄酮
Flavone
原花青素B2 Proanthocyanidin B2 14.93±0.51a 18.86±0.90b 13.41±0.81a
表儿茶素 Epicatechin 9.23±0.10b 11.55±1.55c 5.97±0.33a
异槲皮苷 Isoquercitrin 2.16±0.06b 1.02±0.03a 1.74±0.10b

Table 3

Contents of total phenolics and flavonoids released into digestive fluid and their bioaccessibility during in vitro digestion of carambola"

总酚 Total phenolic(mg GAE/100 g FW) 总黄酮 Total flavonoid(mg CE/100 g FW)
广州红杨桃 GZ 香蜜杨桃 XM 台湾蜜丝杨桃 TW 广州红杨桃 GZ 香蜜杨桃 XM 台湾蜜丝杨桃 TW
果肉中含量
Contents in fruit
234.41±7.88a 293.30±2.16b 244.29±6.98a 175.16±8.57a 278.97±5.50b 165.75±21.16a
胃消化释放量
Content released during GD
180.46±16.89b 158.52±4.26a 151.57±10.94a 164.45±2.58c 132.74±13.83b 113.06±16.92a
胃消化生物可及性
Bioaccessibility during GD (%)
76.98 54.05 62.05 93.88 47.58 68.21
胃肠消化释放量
Content released during GID
155.76±17.85c 136.59±1.11b 116.64±10.84a 148.44±11.53c 111.93±12.01b 78.47±12.63a
胃肠消化生物可及性Bioaccessibility during GID (%) 66.45 46.57 47.75 84.75 40.12 47.34

Fig. 4

ABTS+ free radical scavenging ability of carambola during simulated digestion AC: Carambola extract; GD: Gastric digestive fluid; GID: Gastrointestinal digestive fluid. The same as below"

Table 4

Changes of monomeric phenols content in carambola during in vitro digestion"

单体酚种类
Monomeric phenols
品种
Variety
果实中含量
Content in fruit
胃消化释放量
Content released during GD
胃肠消化释放量
Content released during GID
原儿茶酸
Protocatechuic acid
广州红杨桃 GZ 1.25±0.30b 0.37±0.22a 0.43±0.07a
香蜜杨桃 XM ND ND 0.24±0.02b
台湾蜜丝杨桃 TW 1.49±0.00c 0.22±0.06a 0.43±0.07b
对香豆酸
Para-Coumaric acid
广州红杨桃 GZ 0.98±0.02b 1.15±0.24c 0.58±0.01a
香蜜杨桃 XM 1.23±0.05c 0.89±0.08b 0.58±0.00a
台湾蜜丝杨桃 TW 0.89±0.02b 0.86±0.01b ND
阿魏酸
Ferulic acid
广州红杨桃 GZ 1.28±0.02b 0.76±0.04a 0.72±0.00a
香蜜杨桃 XM 1.40±0.03b 0.87±0.03a 0.75±0.06a
台湾蜜丝杨桃 TW 1.20±0.01c 0.80±0.01b 0.68±0.07a
原花青素 B2 Proanthocyanidin B2 广州红杨桃 GZ 14.93±0.51b 13.07±2.96b 8.45±1.41a
香蜜杨桃 XM 18.86±0.90c 11.88±0.63b 9.58±0.96a
台湾蜜丝杨桃 TW 13.41±0.81c 9.88±0.30b 6.96±0.39a
表儿茶素
Epicatechin
广州红杨桃 GZ 9.23±0.10c 7.93±2.02b 3.32±0.76a
香蜜杨桃 XM 11.55±1.55c 5.86±0.56b 3.79±0.24a
台湾蜜丝杨桃 TW 5.97±0.33c 3.90±0.03b 2.22±0.06a
异槲皮苷
Isoquercitrin
广州红杨桃 GZ 2.16±0.06c 1.32±0.42b 0.73±0.05a
香蜜杨桃 XM 1.02±0.03c 0.63±0.04b 0.39±0.03a
台湾蜜丝杨桃 TW 1.74±0.10c 1.30±0.20b 0.86±0.14a

Fig. 5

ORAC antioxidant capacity of carambola during simulated digestion"

[1] CHEN S W, HSU M C, FANG H H, TSAI S H, LIANG Y S . Effect of harvest season, maturity and storage temperature on storability of carambola ‘Honglong’ fruit. Scientia Horticulturae, 2017,220:42-51.
[2] JIA X C, XIE H H, JIANG Y M, WEI X Y . Flavonoids isolated from the fresh sweet fruit of Averrhoa carambola, commonly known as star fruit. Phytochemistry, 2018,153:156-162.
[3] GUNASEGARAN R . Flavonoids and anthocyanins of three oxalidaceae. Fitoterapia. 1992,63:89-90.
[4] MORESCO H H, QUEIROZ G S, PIZZOLATTI M G, BRIGHENTE I M C. Chemical constituents and evaluation of the toxic and antioxidant activities of Averrhoa carambola leaves. Revista Brasileira de Farmacognosia, 2012,22(2):319-324.
[5] SHUI G H, LEONG L P . Residue from star fruit as valuable source for functional food ingredients and antioxidant nutraceuticals. Food Chemistry, 2006,97(2):277-284.
[6] SILVA K D R R, SIRASA M S F . Antioxidant properties of selected fruit cultivars grown in Sri Lanka. Food Chemistry, 2018,238:203-208.
[7] 庞道瑞 . 杨桃酚类物质降脂作用及其改善肝脂变性的机理研究[D]. 广州: 华南理工大学, 2017.
PANG D R . Lipid-lowering effects of Averrhoa carambola polyphenols and their mechanisms of ameliorating liver steatosis[D]. Guangzhou: South China University of Technology, 2017. (in Chinese)
[8] YANG D, XIE H H, JIA X C, WEI X Y . Flavonoid C-glycosides from star fruit and their antioxidant activity. Journal of Functional Foods, 2015,16:204-210.
[9] YANG D, JIA X C, XIE H H, WEI X Y . Further dihydrochalcone C-glycosides from the fruit of Averrhoa carambola. LWT-Food Science and Technology, 2016,65:604-609.
[10] MANACH C, WILLIAMSON G, MORAND C, SCALBERT A, REMESY C . Bioavailability and bioefficacy of polyphenols in humans. The American Journal of Clinical Nutrition, 2005,81:230S-242S.
[11] PALAFOX-CARLOS H, AYALA-ZAVALA J F, GONZÁLEZ-AGUILAR G A. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. Journal of Food Science, 2011,76(1):R6-R15.
[12] ARRANZ S, SAURA-CALIXTO F, SHAHA S, KROON P A . High contents of nonextractable polyphenols in fruits suggest that polyphenol contents of plant foods have been underestimated. Journal of Agricultural and Food Chemistry, 2009,57(16):7298-7303.
[13] ZAINUDIN M A M, HAMID A A, ANWAR F, OSMAN A, SAARI N . Variation of bioactive compounds and antioxidant activity of carambola (Averrhoa carambola L.) fruit at different ripening stages. Scientia Horticulturae, 2014,172:325-331.
[14] PANG D R, YOU L J, LI T, ZHOU L, SUN W D X, LIU R H. Phenolic profiles and chemical- or cell-based antioxidant activities of four star fruit ( Averrhoa carambola) cultivars. RSC Advances, 2016,6(93):90646-90653.
[15] GUNASEGARAN R . Flavonoids and anthocyanins of three Oxalidaceae. Fitoterapia, 1992,63:89-90.
[16] JIA X C, YANG D, XIE H H, JIANG Y M, WEI X Y . Non-flavonoid phenolics from Averrhoa carambola fresh fruit. Journal of Functional Foods, 2017,32:419-425.
[17] MAHATTANATAWEE K, MANTHEY J A, LUZIO G, TALCOTT S T, GOODNER K, BALDWIN E A . Total antioxidant activity and fiber content of select Florida-grown tropical fruits. Journal of Agricultural and Food Chemistry, 2006,54(19):7355-7363.
[18] AZEEM A K, MATHEW M, DILIP C, NAIR C D C. Hepatoprotective effect of Averrhoea carambola fruit extract on carbon tetrachloride induced hepatotoxicity in mice. Asia Pacific Journal of Tropical Medicine, 2010,3(8):610-613.
[19] LIANG L H, WU X Y, ZHAO T, ZHAO J L, LI F, ZOU Y, MAO G H, YANG L Q . In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry( Morus atropurpurea Roxb.) following simulated gastro-intestinal digestion. Food Research International, 2011,46(1):76-82.
[20] LEUFROY A, NOËL L, BEAUCHEMIN D, GUÉRIN T. Use of a continuous leaching method to assess the oral bioaccessibility of trace elements in seafood. Food Chemistry, 2012,135(2):623-633.
[21] SINGLETON V L, ROSSI J A . Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 1965,16:144-158.
[22] SU D X, LI N, CHEN M, YUAN Y, HE S, WANG Y, WU Q H, LI L, YANG H L, ZENG Q Z . Effects of in vitro digestion on the composition of flavonoids and antioxidant activities of the lotus leaf at different growth stages. International Journal of Food Science & Technology, 2018,53(7):1631-1639.
[23] OU B, HAMPSCH-WOODILL M, PRIOR R L . Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, 2001,49(10):4619-4626.
[24] ZULUETA A, ESTEVE M J, FRÍGOLA A. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chemistry, 2009,114(1):310-316.
[25] RAMFUL D, BAHORUN T, BOURDON E, TARNUS E, ARUOMA O I . Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: Potential prophylactic ingredients for functional foods application. Toxicology, 2010,278(1):75-87.
[26] ZHANG R F, ZENG Q S, DENG Y Y, ZHANG M W, WEI Z C, ZHANG Y, TANG X J . Phenolic profiles and antioxidant activity of litchi pulp of different cultivars cultivated in Southern China. Food Chemistry, 2013,136(3/4):1169-1176.
[27] DERRADJI-BENMEZIANE F, DJAMAI R, CADOT Y . Antioxidant capacity, total phenolic, carotenoid, and vitamin C contents of five table grape varieties from Algeria and their correlations. Journal International Des Sciences De La Vigne Et Du Vin, 2014,48(2):153-162.
[28] SHUI G H, LEONG L P . Analysis of polyphenolic antioxidants in star fruit using liquid chromatography and mass spectrometry. Journal of Chromatography A, 2004,1022(1/2):67-75.
[29] WEI S D, CHEN H, YAN T, LIN Y M, ZHOU H C . Identification of antioxidant components and fatty acid profiles of the leaves and fruits from Averrhoa carambola. LWT-Food Science and Technology, 2014,55(1):278-285.
[30] HOSOI S, SHIMIZU E, ARIMORI K, OKUMURA M, HIDAKA M, YAMADA M, SAKUSHIMA A . Analysis of CYP3A inhibitory components of star fruit (Averrhoa carambola L.) using liquid chromatography-mass spectrometry. Journal of Natural Medicines, 2008,62(3):345-348.
[31] BLANCAS-BENITEZ F J, MERCADO-MERCADO G, QUIRÓS- SAUCEDA A E, MONTALVO-GONZÁLEZ G E, GONZÁLEZ- AGUILAR G A, SÁYAGO-AYERDI S G . Bioaccessibility of polyphenols associated with dietary fiber and in vitro kinetics release of polyphenols in Mexican ‘Ataulfo’ mango (Mangifera indica L.) by-products. Food and Function, 2015,6(3):859-868.
[32] SAURA-CALIXTO F, SERRANO J, GOÑI I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chemistry, 2007,101:492-501.
[33] CHITINDINGU K, BENHURA M A N, MUCHUWETI M. In vitro bioaccessibility assessment of phenolic compounds from selected cereal grains: A prediction tool of nutritional efficiency. LWT-Food Science and Technology, 2015,63(1):575-581.
[34] ZHAO G H, ZHANG R F, DONG L H, HUANG F, LIU L, DENG Y Y, MA Y X, ZHANG Y, WEI Z C, XIAO J, ZHANG M W . A comparison of the chemical composition, in vitro bioaccessibility and antioxidant activity of phenolic compounds from rice bran and its dietary fibres. Molecules, 2018,23(1):202.
[35] VELDERRAIN RODRIGUEZ G R, BLANCAS-BENITEZ F J, WALL-MEDRANO A, SAYAGO-AYERDI S G, GONZALEZ- AGUILAR G A . Bioaccessibility and bioavailability of phenolic compounds from tropical fruits. Fruit and Vegetable Phytochemicals, 2018,2:155-164.
[36] LINGUA M S, WUNDERLIN D A, BARONI M V . Effect of simulated digestion on the phenolic components of red grapes and their corresponding wines. Journal of Functional Foods, 2018,44:86-94.
[37] SUN Y J, TAO W Y, HUANG H Z, YE X Q, SUN P L . Flavonoids, phenolic acids, carotenoids and antioxidant activity of fresh eating citrus fruits, using the coupled in vitro digestion and human intestinal HepG2 cells model. Food Chemistry, 2019,279:321-327.
[38] CORREA-BETANZO J, ALLEN-VERCOE E, MCDONALD J, SCHROETER K, CORREDIG M, PALIYATH G . Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chemistry, 2014,165(20):522-531.
[39] ŚWIECA M, GAWLIK-DZIKI U, DZIKI D, BARANIAK B, CZYZ J . The influence of protein-flavonoid interactions on protein digestibility in vitro and the antioxidant quality of breads enriched with onion skin. Food Chemistry, 2013,141(1):451-458.
[40] TOYDEMIR G, CAPANOGLU E, KAMILOGLU S, BOYACIOGLU D, VOS R C H, HALL R D, BEEKWILDER J. Changes in sour cherry (Prunus cerasus L.) antioxidants during nectar processing and in vitro gastrointestinal digestion. Journal of Functional Foods, 2013,5(3):1402-1413.
[41] 刘国艳, 张洁, 徐鑫, 宋丹丹, 马骐, 刘佳骥, 王阳阳, 于苏宁 . 体外消化对芹菜黄酮混合物和单体的含量及抗氧化应激能力的影响. 食品科学, 2018,39(18):8-14.
LIU G Y, ZHANG J, XU X, SONG D D, MA Q, LIU J J, WANG Y Y, YU S N . Contents of flavonoids extracts or monomer and and antioxidative stress ability after in vitro digestion. Food Science, 2018,39(18):8-14. (in Chinese)
[42] TAGLIAZUCCHI D, VERZELLONI E, BERTOLINI D, CONTE A . In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 2010,120:599-606.
[43] BERMÚDEZ-SOTO M J, TOMÁS-BARBERAN F A, GARCÍA- CONESA M T . Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chemistry, 2007,102:865-874.
[44] McDOUGALL G J, FYFFE S, DOBSON P, STEWART D . Anthocyanins from red wine-their stability under simulated gastrointestinal digestion. Phytochemistry, 2005,66:2540-2548.
[45] McCLAIN S, BOWMAN C, FERNÁNDEZ-RIVAS M, LADICS G S, VAN REE R . Allergic sensitization: Food-and protein-related factors. Clinical and Translational Allergy, 2014,4(1):11.
[46] SENSOY I . A review on the relationship between food structure, processing, and bioavailability. Critical Reviews in Food Science and Nutrition, 2014,54(7):902-909.
[47] PALAFOX-CARLOS H, AYALA-ZAVALA J F, GONZALEZ- AGUILAR G A. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. Journal of Food Science, 2011,76(1):R6-R15.
[48] QUIRÓS-SAUCEDA A E, PALAFOX-CARLOS H, SÁYAGO-AYERDI S G, AYALA-ZAVALA J F, BELLO-PEREZ L A, ÁLVAREZ-PARRILLA E, DE LA ROSA L A, GONZÁLEZ-CORDOVA A F, GONZÁLEZ- AGUILAR G A . Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion. Food & Function, 2014,5(6):1063-1072.
[49] SCHULZ M, BILUCA F C, GONZAGA L V, BORGES G S C, VITALI L, MICKE G A, GOIS J S, ALMEIDA T S, BORGES D L G, MILLER P R M, COSTA A C O, FETT R. Bioaccessibility of bioactive compounds and antioxidant potential of juçara fruits (Euterpe edulis Martius) subjected to in vitro gastrointestinal digestion. Food Chemistry, 2017,228:447-454.
[50] FRONTELA C, ROS G, MARTÍNEZ C, SÁNCHEZ S L M, CANALI R, VIRGILI F,. Stability of Pycnogenol (R) as an ingredient in fruit juices subjected to in vitro gastrointestinal digestion. Journal of the Science of Food and Agriculture, 2011,91(2):286-292.
[51] MOSELE J I, MACIÀ A, MOTILVA M J . Metabolic and microbial modulation of the large intestine ecosystem by non-absorbed diet phenolic compounds: A review. Molecules, 2015,20(9):17429-17468.
[52] SZWAJGIER D, WAŚKO A, TARGOŃSKI Z, NIEDZWIADEK M, BANCARZEWSKA M. The use of a novel ferulic acid esterase from lactobacillus acidophilus K1 for the release of phenolic acids from brewer’s spent grain. The Institute of Brewing, 2010,116(3):293-303.
[53] 樊梓鸾, 柳雅馨, 杨蕾玉, 张华, 绰尔鹏, 李娜 . 3种浆果-藕复合果丹皮体外消化物抗氧化研究. 南京林业大学学报(自然科学版), 2018,42(3):86-92.
FAN Z L, LIU Y X, YANG L Y, ZHANG H, ZHUO E P, LI N . Antioxidant activity of digestive products from three kinds of berry- lotus root complex in vitro. Journal of Nanjing Forestry University (Natural Science Edition), 2018,42(3):86-92. (in Chinese)
[54] 万坤, 郭珍妮, 李思杰, 李英, 閤春梅, 苏东晓, 吴庆华, 王允 . 体外消化对高粱壳酚类物质含量及其抗氧化活性的影响. 食品科技, 2017,42(3):180-185.
WAN K, GUO Z N, LI S J, LI Y, XIA C M, SU D X, WU Q H, WANG Y . Effects of simulated digestion on contents and antioxidants of phenolics of sorghum hull. Food Science and Technology, 2017,42(3):180-185. (in Chinese)
[55] LIU M, LI X Q, WEBER C, LEE C Y, BROWN J, LIU R H . Antioxidant and antiproliferative activities of raspberries. Journal of Agricultural and Food Chemistry, 2002,50:2926-2930.
[56] THAIPONG K, BOONPRAKOB U, CROSBY K, CISNEROS Z L, BYRNE D H . Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 2006,19:669-675.
[57] XU C M, ZHANG Y L, CAO L, LU J . Phenolic compounds and antioxidant properties of different grape cultivars grown in China. Food Chemistry, 2010,119(4):1557-1565.
[58] LI F X, LI F H, YANG Y X, YIN R, MING J . Comparison of phenolic profiles and antioxidant activities in skins and pulps of eleven grape cultivars ( Vitis vinifera L.). Journal of Integrative Agriculture, 2019,18(5):1148-1158.
[59] ZHANG H, YANG Y F, ZHOU Z Q . Phenolic and flavonoid contents of mandarin (Citrus reticulata Blanco) fruit tissues and their antioxidant capacity as evaluated by DPPH and ABTS methods. Journal of Integrative Agriculture, 2018,17(1):256-263.
[60] ZHANG Y M, SUN Y J, XI W P, SHEN Y, QIAO L P, ZHONG L Z, YE X Q, ZHOU Z Q . Phenolic compositions and antioxidant capacities of Chinese wild mandarin (Citrus reticulata Blanco) fruits. Food Chemistry, 2014,145:674-680.
[61] 周伟金, 陈雪, 易有金, 杨月欣, 刘静, 徐维盛 . 不同类型茶叶体外抗氧化能力的比较分析. 中国食品学报, 2014,14(8):262-268.
ZHOU W J, CHEN X, YI Y J, YANG Y X, LIU J, XU W S . Comparative analysis on antioxidant capacities of different types of fermented teas in vitro. Journal of Chinese Institute of Food Science and Technology, 2014,14(8):262-268. (in Chinese)
[62] 李绮丽 . 莲子皮低聚原花青素分级分离、组分鉴定与抗氧化机理研究[D]. 长沙: 湖南农业大学, 2013.
LI Q L . Studies on isolation, identification and antioxidant activity of oligomeric proanthocyanidins from lotus[D]. Changsha: Agricultural University of Hunan, 2013. (in Chinese)
[63] 姜贵全 . 落叶松树皮原花青素的分级纯化及催化降解研究[D]. 哈尔滨: 东北林业大学, 2013.
JIANG G Q . Study on the fractionation, purification and catalyzed degradation of proanthocyanidins from larch bark[D]. Haerbin: Northeast Forestry University, 2013. (in Chinese)
[64] GIL M I, TOMÁS-BARBERÁN F A, HESS-PIERCE B, KADER A A. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. Journal of Agricultural & Food Chemistry, 2002,50(17):4976-4982.
[65] ACOSTA-ESTRADA B A, GUTIÉRREZ-URIBE J A, SERNA- SALDÍVAR S O . Bound phenolics in foods, a review. Food Chemistry, 2014,152:46-55.
[66] WANG T, HE F L, CHEN G B . Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. Journal of Functional Foods, 2014,7:101-111.
[67] VITAGLIONE P, NAPOLITANO A, FOGLIANO V . Cereal dietary fibre: A natural functional ingredient to deliver phenolic compounds into the gut. Trends in Food Science & Technology, 2008,19(9):451-463.
[68] SAURA-CALIXTO F . Concept and health-related properties of nonextractable polyphenols: The missing dietary polyphenols. Journal of Agricultural Food Chemistry, 2012,60:11195-11200.
[69] AJILA C M, PRASADA RAO U J S. Mango peel dietary fiber: Composition and associated bound phenolics. Journal of Functional Foods, 2013,5:444-450.
[70] DAS A K, SINGH V . Antioxidative free and bound phenolic constituents in pericarp, germ and endosperm of Indian dent (Zea mays var. indentata) and flint(Zea mays var. indurata) maize. Journal of Functional Foods, 2015,13:363-374.
[1] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[2] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[3] ZiHan FAN,YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG. Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(18): 3600-3612.
[4] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[5] LU Qi,JIA XuChao,DENG Mei,ZHANG RuiFen,DONG LiHong,HUANG Fei,CHI JianWei,LIU Lei,ZHANG MingWei. Effects of Different Drying Methods on Bioactive Components of Shatianyou (Citrus grandis L. Osbeck) Pomace Powder [J]. Scientia Agricultura Sinica, 2022, 55(14): 2825-2836.
[6] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[7] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[8] FAN WeiGuo,PAN XueJun,HE ChunLi,CHEN Hong,ZHOU YuJia. Accumulation of Sugar and Flavonoids as Well as Their Association with Changes of Light Intensity During Fruit Development of Rosa roxburghii [J]. Scientia Agricultura Sinica, 2021, 54(24): 5277-5289.
[9] HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124.
[10] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[11] ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves [J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
[12] YAN ZhenHua,LIU DongYao,JIA XuCun,YANG Qin,CHEN YiBo,DONG PengFei,WANG Qun. Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage [J]. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608.
[13] CUI HuLiang,HE Xia,ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages [J]. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869.
[14] HAO XiaoYan,MU ChunTang,QIAO Dong,ZHANG XuanZi,YANG WenJun,ZHAO JunXing,ZHANG ChunXiang,ZHANG JianXin. Effects of High-Concentrate Diet Supplemented with Grape Seed Proanthocyanidins on Rumen fermentation, Inflammatory and Antioxidant Indicators of Rumen and Serum in Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2239-2248.
[15] Min LIU,Yulin FANG. Effects of Heat Stress on Physiological Indexes and Ultrastructure of Grapevines [J]. Scientia Agricultura Sinica, 2020, 53(7): 1444-1458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!