Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (11): 2155-2163.doi: 10.3864/j.issn.0578-1752.2018.11.013

• HORTICULTURE • Previous Articles     Next Articles

QTL Fine Mapping and Candidate Gene Prediction for Growth     Traits in G.41×Malus sieversii

DONG Jun, WANG Jing, LIANG Wei, MA BaiQuan, DONG LiJuan, MA FengWang, FU XuanChang, LI CuiYing   

  1. College of Horticulture, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi
  • Received:2017-09-21 Online:2018-06-01 Published:2018-06-01

Abstract: 【Objective】Dwarf rootstock is an important germplasm to be utilized in the production of high and stable yields of apples by inducing dwarf scions. Mapping the genes that regulate the growth of apple trees has important theoretical and practical significance for improving apple's yield and quality. 【Method】 In this study, 188 F1 progenies derived from the cross G.41×Malus sieversii were used to perform QTL mapping, and ‘Fuji Champion’ were grafted on every F1 plant. Subsequently, based on SSR markers, a genetic map of apple was constructed using Join Map 4.0 software. Using Map QTL 5.0 mapping software, the growth traits, including scion height and cross-sectional area of the scion were used as phenotypic data in QTL preliminary analysis. Combined with information from the apple genome sequence and newly developed SSR markers using Primer 5.0 software, the QTL has been defined and the candidate genes were predicted. 【Result】 In this study, a total of 108 out of 361 SSRs showed a variable degree of polymorphism, and the polymorphism rate was 29.9%. A genetic map was constructed using 95 of 108 polymorphism SSRs and four QTLs for the growth trait were detected in linkage group No.5. Two markers (L05024 and Hi09b04) were closely linked with the height and the cross-sectional area of scion. Combined with the genome sequence, 24 new SSR markers were developed, which contained 10 polymorphism markers. Subsequently, the linkage group No.5 was analyzed again using these 10 markers. The reconstructed high density linkage group, consisted of 21 SSR markers, spanning 86.0 cM with an average of 7.52 cM per marker. The QTLs responsible for the height and the cross-sectional area of the scion were defined and two relevant SSR markers (L05024 and Hi09b04) were identified accounting for 19.2% and 51.7% of the observed phenotypic variation. According to the ‘Gold Delicious’ genome sequence, this locus has been defined in a region of 543 kb that contains 16 candidate genes and a gene (MDP0000323212) was considered as the candidate gene for plant growth in this QTL interval. 【Conclusion】 In this study, genes responsible for dwarfing were located in a 4.048-4.591 Mb interval on apple chromosome No.5 and two high linked SSR markers (L05024 and Hi09b04) were identified. A gene (MDP0000323212) was identified as a potential candidate gene for growth traits.

Key words: apple rootstock, SSR, genetic map, QTL, candidate gene

[1]    LAURENS F. Review of the current apple breeding programes in the world: objectives for scion cultivar improvement. Eucarpia Symposium on Fruit Breeding and Genetics, 1996, 484: 163-170.
[2]    陈学森, 韩明玉, 苏桂林, 刘凤之, 过国南, 姜远茂, 毛志泉, 彭福田, 束怀瑞. 当今世界苹果产业发展趋势及我国苹果产业优质高效发展意见. 果树学报, 2010, 27(4): 598-604.
CHEN X S, HAN M Y, SU G L, LIU F Z, GUO G N, JIANG Y M, MAO Z Q, PENG F T, SHU H R. Discussion on today's world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China. Journal of Fruit Science, 2010, 27(4): 598-604. (in Chinese)
[3]    ATKINSON C, ELSE M. Understanding how rootstocks dwarf fruit trees. Compact Fruit Tree, 2001, 34(2): 46-49.
[4]    SELEZNYOVA A N, THORP T G, WHITE M, TUSTIN S, COSTES E. Application of architectural analysis and AMAP mod methodology to study dwarfing phenomenon: The branch structure of ‘Royal Gala’ apple grafted on dwarfing and non-dwarfing rootstock/interstock combinations. Annals of Botany, 2003, 91(6): 665-672.
[5]    LAURENS F, AUDERGON J M, CLAVERIE J, CLAVERIE J, DUVAL H, GERMAIN E, KERVELLA J, LESPINASSE J. Integration of architectural types in French programes of ligneous fruit species genetic improvement. Fruits-Paris, 2000, 55(2): 141-152.
[6]    李英慧, 韩振海, 许雪峰. 分子标记技术在苹果育种中的应用. 生物技术通报, 2002, 18(6): 11-14.
LI Y H, HAN Z H, XU X F. Application of molecular marker technique in apple breeding. Biotechnology Bulletin, 2002, 18(6): 11-14. (in Chinese)
[7]    过国南, 阎振立, 张顺妮. 我国建国以来苹果品种选育研究的回顾及今后育种的发展方向. 果树学报, 2003, 20(2): 127-134.
GUO G N, YAN Z L, ZHANG S N. Review and outlook of breeding in China. Journal of Fruit Science, 2003, 20(2): 127-134. (in Chinese)
[8]    王宇霖. 关于我国苹果育种研究工作的几点想法. 果树学报, 2008, 25(3): 559-565.
WANG Y L. Some ideas about the apple breeding in China. Journal of Fruit Science, 2008, 25(3): 559-565. (in Chinese)
[9]    黄金凤, 王冬梅, 闫忠业, 吕天星, 王颖答, 刘志. 苹果遗传图谱的构建与QTL定位研究进展. 江苏农业科学, 2016, 44(2): 4-8.
HUANG J F, WANG D M, YAN Z Y, LV T X, WANG Y D, LIU Z. Advance in genetic mapping and QTL localization of apple. Jiangsu Agricultural Sciences, 2016, 44(2): 4-8. (in Chinese)
[10]   WATKINS R, SPANGELO L P S. Components of genetic variance for plant survival and vigor of apple trees. Theoretical and Applied Genetics, 1970, 40(5): 195-203.
[11]   DUREL C E, LAURENS F, FOUILLET A, LESPINASSE Y. Utilization of pedigree information to estimate genetic parameters from large unbalanced data sets in apple. Theoretical and Applied Genetics, 1998, 96(8): 1077-1085.
[12]   ORAGUZIE N C, HOFSTEE M E, BREWER L R, HOWARD C. Estimation of genetic parameters in a recurrent selection program in apple. Euphytica, 2001, 118(1): 29-37.
[13]   PILCHER R L R, CELTON J M, GARDINER S E, TUSTIN D. S. Genetic markers linked to the dwarfing trait of apple rootstock ‘Malling 9’. Journal of the American Society for Horticultural Science, 2008, 133(1): 100-106.
[14]   FAZIO G, WAN Y, KVIKLYS D, ROMERO L, ADAMS R, STRICKLAND D, ROBINSON T. Dw2, a new dwarfing locus in apple rootstocks and its relationship to induction of early bearing in apple scions. Journal of the American Society for Horticultural Science, 2014, 139(2): 87-98.
[15]   FOSTER T M, CELTON J M, CHAGNÉ D, TUSTIN D S, GARDINER S E. Two quantitative trait loci, Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple. Horticulture Research, 2015: 1-9.
[16]   HARRISON N, HARRISON R J, BARBER-PEREZ N, CASCANT- LOPEZ E, COBO-MEDINA M, LIPSKA M, FERNÁNDEZ- FERNÁNDEZ F. A new three-locus model for rootstock-   induced dwarfing in apple revealed by genetic mapping of root bark percentage. Journal of Experimental Botany, 2016, 67(6): 1871-1881.
[17]   FERNÁNDEZ-FERNÁNDEZ F, ANTANAVICIUTE L, VAN DYK MM, TOBUTT K R, EVANS K M, REES D J G, SARGENT D J. A genetic linkage map of an apple rootstock progeny anchored to the Malus genome sequence. Tree Genetics & Genomes, 2012, 8(5): 991-1002.
[18]   何坤辉, 常立国, 崔婷婷, 渠建洲, 郭东伟, 徐淑兔. 多环境下玉米株高和穗位高的QTL定位. 中国农业科学, 2016, 49(8): 1443-1452.
HE K H, CHANG L G, CUI T T , QU J Z, GUO D W, XU S T. Mapping QTL for plant height and ear height in maize under multi- environments. Scientia Agricultura Sinica, 2016, 49(8): 1443-1452.
[19]   张江江, 詹杰鹏, 刘清云, 师家勤, 王新发, 刘贵华. 油菜株高qtl定位、整合和候选基因鉴定. 中国农业科学, 2017, 50(17): 3247-3258.
ZHANG J J, ZHAN J P, LIU Q Y, SHI J Q, WANG X F, LIU G H. QTL mapping and integration as well as candidate genes identification for plant height in rapeseed (Brassica napus L.). Scientia Agricultura Sinica, 2017, 50(17): 3247-3258.
[20]   姚晓云, 李清, 刘进, 姜树坤, 杨生龙,王嘉宇. 不同环境下水稻株高和穗长的QTL分析. 中国农业科学, 2015, 48(3): 407-414.
YAO X Y, LI Q, LIU J, JIANG S K, YANG S L, WANG J Y. Dissection of QTLs for plant height and panicle length traits in rice under different environment. Scientia Agricultura Sinica, 2015, 48(3): 407-414.
[21]   张玲, 郭爽, 汪玲, 张天泉, 庄慧, 龙珏臣等. 水稻矮化并花发育异常突变体dwarf and deformed flower 2(ddf2)的基因定位与候选基因分析. 中国农业科学, 2015, 48(10): 1873-1881.
ZAHNG L, GUO S, WANG L, ZHANG T Q, ZHAUNG H, LONG Y C. Gene mapping and candidate gene analysis of a dwarf and deformed flower 2 (ddf2) mutant in rice (Oryza sativa). Scientia Agricultura Sinica, 2015, 48(10): 1873-1881.
[22]   苗晗, 顾兴芳, 张圣平, 张忠华, 黄三文, 王烨. 利用永久群体在不同环境下定位黄瓜株高QTL. 中国农业科学, 2012, 45(22): 4552-4560.
MIAO H, GU X F, ZHANG S P, ZHANG Z H, HAUNG S W, WANG Y. Detection of quantitative trait loci for plant height in different environments using an RIL population in cucumber. Scientia Agricultura Sinica, 2012, 45(22): 4552-4560.
[23]   LODHI M A, YE G N, WEEDEN N F, REISCH B I. A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Molecular Biology Reporter, 1994, 12(1): 6-13.
[24]   VAN OOIJEN J W. JoinMap 4: Software for the calculation of genetic linkage maps in experimental populations.Kyazma BV, Wageningen, Netherlands. 2006.
[25]   VAN OOIJEN J W. MapQTL® 5. Software for the mapping of quantitative trait loci in experimental populations.Kyazma BV, Wageningen, Netherlands. 2004.
[26]   WANG Z, WEBER J L, ZHONG G, TANKSLEY S D. Survey of plant short tandem DNA repeats. Theoretical and Applied Genetics, 1994, 88(1): 1-6.
[27]   LEVINSON G, GUTMAN G A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Molecular Biology And Evolution, 1987, 4(3): 203-221.
[28]   RICHARDS R I, SUTHERLAND G R. Dynamic mutations: a new class of mutations causing human disease. Cell, 1992, 70(5): 709-712.
[29]   LIEBHARD R, KOLLER B, GIANFRANCESCHI L, GESSLER C. Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theoretical & Applied Genetics, 2003, 106(8): 1497-1508.
[30]   KENIS K, KEULEMANS J, DAVEY M W. Identification and stability of QTLs for fruit quality traits in apple. Tree Genetics & Genomes,2008, 4(4): 647-661.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[3] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[4] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[5] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[6] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[7] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[8] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[9] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[10] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[11] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[12] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[13] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[14] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[15] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!