Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (8): 1617-1629.doi: 10.3864/j.issn.0578-1752.2022.08.012

• HORTICULTURE • Previous Articles     Next Articles

Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress

LI QingLin(),ZHANG WenTao,XU Hui,SUN JingJing   

  1. College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu
  • Received:2021-08-13 Accepted:2021-10-13 Online:2022-04-16 Published:2022-05-11
  • Contact: QingLin LI E-mail:776767151@qq.com

Abstract:

【Background】 Xylem sap is responsible for the transport of water and nutrients for the aerial part, while phloem sap is mainly responsible for the transport of photosynthetic products. When plants are subjected to abiotic stress, the sap of xylem and phloem undergoes different changes. 【Objective】 The aim of this study was to investigate the content changes of various metabolites in cucumber xylem and phloem sap under low phosphorus stress, and to explore the metabolic changes of cucumber under low phosphorus stress, so as to provide new ideas and basis for the diagnosis of cucumber phosphorus deficiency. 【Method】 The xylem and phloem sap were collected from cucumber plants under normal phosphorus level (1.25 mmol∙L-1) and low phosphorus stress (0.3125 mmol∙L-1). These sap samples were analyzed qualitatively and quantitatively by GC-MS after trimethylsilyl derivatization. 【Result】In xylem sap under low phosphorus stress, there was no significant change in carbohydrates, and the content of most amino acids increased significantly. Among organic acids, the malic acid showed a significant downward trend, while others, such as palmitic acid and oleic acid, were significantly higher than the normal levels. In phloem sap under low phosphorus stress, most carbohydrates and amino acids were lower than the normal level, and the contents of organic acids, such as oxalic acid and succinic acid, were also significantly reduced. Further, in order to screen potential biomarkers in cucumber xylem and phloem sap, the detection data were further analyzed by OPLS-DA and Student's t test. Eight potential biomarkers (VIP>1, P<0.05) under low phosphorus stress were detected in cucumber xylem sap, which were cadaverine, malic acid, 4-aminobutyric acid, palmitic acid, myo-inositol, cellobiose acid, N, N-dimethyldodecamide, and glycerol monostearate. Seven potential biomarkers (VIP>1, P<0.05) under low phosphorus stress were detected in cucumber phloem sap, which were serine, linoleic acid, 9-(3-methyl-5-pentylfuran-2-yl) nonanoic acid, dehydroabietic acid, N, N-dimethyldodecamide, 2, 2'-methylenebis (6-tert-butyl-4-methylphenol), and L-2-piperic acid. 【Conclusion】 Under low phosphorus stress, the carbohydrates, amino acids and organic acids in the xylem and phloem sap of cucumber changed, but the change trends were not the same. Eight and seven biomarkers were screened from xylem and phloem sap, which could provide new ideas and basis for the diagnosis of cucumber phosphorus deficiency. Among the biomarkers, the detection methods of malic acid, 4-aminobutyric acid, palmitic acid, serine and linoleic acid have been relatively mature, and the cucumber phosphorus deficiency diagnosis method based on them was more practical.

Key words: cucumber, xylem, phloem, phosphorus stress, metabolomics, biomarkers

Table 1

Weekly variation of phenotypic parameters of cucumber plants under different phosphorus treatments"

磷水平
Phosphorus level
株高增长量 Height growth (cm) 茎粗增长量 Diameter growth (mm)
第一周 Week 1 第二周 Week 2 第一周Week 1 第二周 Week 2
100% 28.07±2.56a 31.96±3.50a 0.77±0.09a 0.90±0.07a
25% 25.47±2.02a 22.31±3.87b 0.64±0.19a 0.71±0.12b

Table 2

Cucumber grouping table"

序号
Sequence
组别名
Group alias
位置
Position
营养液中磷离子浓度
Phosphorus ion concentration in nutrient solution (mmol∙L-1)
1 P25X 木质部汁液 Xylem sap 0.3125
2 P25P 韧皮部汁液 Phloem sap 0.3125
3 P100X 木质部汁液 Xylem sap 1.25
4 P100P 韧皮部汁液 Phloem sap 1.25

Fig. 1

The PCA score of xylem (A) and phloem (B) sap"

Fig. 2

Changes of sugars in xylem and phloem sap under low phosphorus stress Different lowercase letters mean significant difference (P<0.05). The same as below"

Fig. 3

Changes of amino acids in xylem and phloem sap under low phosphorus stress"

Fig. 4

Changes of organic acids in xylem and phloem sap under low phosphorus stress"

Fig. 5

OPLS-DA score map of xylem and phloem sap (xylem A, phloem B), S-plot map of xylem and phloem sap (xylem C, phloem D), 200 times permutation test results (xylem E, phloem F)"

Fig. 6

Boxplots of potential biomarkers of xylem sap"

Fig. 7

Boxplots of potential biomarkers of phloem sap"

[1] RODRÍGUEZ-CELMA J, CEBALLOS-LAITA L, GRUSAK M A, ABADÍA J, LÓPEZ-MILLÁN A F. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes. Biochimica et Biophysica Acta, 2016, 1864(8): 991-1002. doi: 10.1016/j.bbapap.2016.03.014.
doi: 10.1016/j.bbapap.2016.03.014
[2] LUCAS W J, GROOVER A, LICHTENBERGER R, FURUTA K, YADAV S R, HELARIUTTA Y, HE X Q, FUKUDA H, KANG J, BRADY S M, PATRICK J W, SPERRY J, YOSHIDA A, LÓPEZ-MILLÁN A F, GRUSAK M A, KACHROO P. The plant vascular system: Evolution, development and functions. Journal of Integrative Plant Biology, 2013, 55(4): 294-388.
doi: 10.1111/jipb.12041
[3] 杨春, 谭太龙, 余佳玲, 廖琼, 张晓龙, 张振华, 宋海星, 官春云. 大气CO2浓度倍增对油菜韧皮部汁液成分及根部氮素积累的影响. 植物生态学报, 2014, 38(7): 776-784. doi: 10.3724/SP.J.1258.2014.00073.
doi: 10.3724/SP.J.1258.2014.00073
YANG C, TAN T L, YU J L, LIAO Q, ZHANG X L, ZHANG Z H, SONG H X, GUAN C Y. Effects of atmospheric CO2 enrichment on phloem sap composition and root nitrogen accumulation in oilseed rape. Chinese Journal of Plant Ecology, 2014, 38(7): 776-784. doi: 10.3724/SP.J.1258.2014.00073. (in Chinese)
doi: 10.3724/SP.J.1258.2014.00073
[4] ZHANG Y, MA X M, WANG X C, LIU J H, HUANG B Y, GUO X Y, XIONG S P, LA G X. UPLC-QTOF analysis reveals metabolomic changes in the flag leaf of wheat (Triticum aestivum L.) under low-nitrogen stress. Plant Physiology and Biochemistry, 2017, 111: 30-38. doi: 10.1016/j.plaphy.2016.11.009.
doi: 10.1016/j.plaphy.2016.11.009
[5] 许彦阳, 姚桂晓, 刘平香, 赵洁, 王昕璐, 孙君茂, 钱永忠. 代谢组学在农产品营养品质检测分析中的应用. 中国农业科学, 2019, 52(18): 3163-3176. doi: 10.3864/j.issn.0578-1752.2019.18.009.
doi: 10.3864/j.issn.0578-1752.2019.18.009
XU Y Y, YAO G X, LIU P X, ZHAO J, WANG X L, SUN J M, QIAN Y Z. Review on the application of metabolomic approaches to investigate and analysis the nutrition and quality of agro-products. Scientia Agricultura Sinica, 2019, 52(18): 3163-3176. doi: 10.3864/j.issn.0578-1752.2019.18.009. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.18.009
[6] 吴昊, 于小红, 马光朝, 马致洁, 章从恩. 基于LC-MS的甘草炮制雷公藤降低肝毒性的代谢组学研究. 中草药, 2020, 51(21): 5501-5508. doi: 10.7501/j.issn.0253-2670.2020.21.014.
doi: 10.7501/j.issn.0253-2670.2020.21.014
WU H, YU X H, MA G C, MA Z J, ZHANG C E. Metabolomics study on reduction of hepatotoxic of Tripterygium wilfordii processed by liquorice based on LC-MS. Acupuncture Research, 2020, 51(21): 5501-5508. doi: 10.7501/j.issn.0253-2670.2020.21.014. (in Chinese)
doi: 10.7501/j.issn.0253-2670.2020.21.014
[7] SUNG J, LEE S, LEE Y J, HA S, SONG B, KIM T, WATERS B M, KRISHNAN H B. Metabolomic profiling from leaves and roots of tomato (Solanum lycopersicum L.) plants grown under nitrogen, phosphorus or potassium-deficient condition. Plant Science, 2015, 241: 55-64. doi: 10.1016/j.plantsci.2015.09.027.
doi: 10.1016/j.plantsci.2015.09.027
[8] ZHAO X, CHEN M J, LI Z P, ZHAO Y, YANG H L, ZHA L, YU C X, WU Y J, SONG X X. The response of Volvariella volvacea to low-temperature stress based on metabonomics. Frontiers in Microbiology, 2020, 11: 1787. doi: 10.3389/fmicb.2020.01787.
doi: 10.3389/fmicb.2020.01787
[9] ZHANG J T, ZHANG Y, DU Y Y, CHEN S Y, TANG H R. Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. Journal of Proteome Research, 2011, 10(4): 1904-1914. doi: 10.1021/pr101140n.
doi: 10.1021/pr101140n
[10] JEON E, CHOI S, YEO K H, PARK K S, RATHOD M L, LEE J. Development of electrical conductivity measurement technology for key plant physiological information using microneedle sensor. Journal of Micromechanics and Microengineering, 2017, 27(8): 85009. doi: 10.1088/1361-6439/aa7362.
doi: 10.1088/1361-6439/aa7362
[11] LU L, HUANG M, HUANG Y X, CORVINI P F X, JI R, ZHAO L J. Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environmental Science: Nano, 2020, 7(6): 1692-1703. doi: 10.1039/D0EN00214C.
doi: 10.1039/D0EN00214C
[12] HE J, BOUWMEESTER H J, DICKE M, KAPPERS I F. Correction to: Transcriptional and metabolite analysis reveal a shift in direct and indirect defences in response to spider‑mite infestation in cucumber (Cucumis sativus). Plant Molecular Biology, 2020, 103(4/5): 507-509. doi: 10.1007/s11103-020-01009-8.
doi: 10.1007/s11103-020-01009-8
[13] LI T F, LU M, GAO Y H, HUANG X D, LIU G Y, XU D H. Double layer MOFs M-ZIF-8@ZIF-67: The adsorption capacity and removal mechanism of fipronil and its metabolites from environmental water and cucumber samples. Journal of Advanced Research, 2020, 24: 159-166. doi: 10.1016/j.jare.2020.03.013.
doi: 10.1016/j.jare.2020.03.013
[14] 赵静, 郭勇祥, 林志豪, 陈晓鑫, 黄三文, 廖红. 黄瓜磷效率评价及其基因型差异. 广东农业科学, 2015, 42(19): 27-35, 2. doi: 10.16768/j.issn.1004-874x.2015.19.019.
doi: 10.16768/j.issn.1004-874x.2015.19.019
ZHAO J, GUO Y X, LIN Z H, CHEN X X, HUANG S W, LIAO H. Evaluation of phosphorus efficiency and its genotypic variations in cucumber. Guangdong Agricultural Sciences, 2015, 42(19): 27-35, 2. doi: 10.16768/j.issn.1004-874x.2015.19.019. (in Chinese)
doi: 10.16768/j.issn.1004-874x.2015.19.019
[15] 葛体达, 姜武, 宋世威, 黄丹枫. 无机氮和氨基酸态氮处理对番茄幼苗木质部和韧皮部汁液中矿质养分的影响. 园艺学报, 2009, 36(3): 347-354. doi: 10.16420/j.issn.0513-353x.2009.03.027.
doi: 10.16420/j.issn.0513-353x.2009.03.027
GE T D, JIANG W, SONG S W, HUANG D F. Influence of inorganic and amino acid nitrogen on mineral nutrient contents in xylem and phloem sap of different tomato (Solanum lycopersicum) cultivars. Acta Horticulturae Sinica, 2009, 36(3): 347-354. doi: 10.16420/j.issn.0513-353x.2009.03.027. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2009.03.027
[16] FAN H F, XU Y L, DU C X, WU X. Phloem sap proteome studied by iTRAQ provides integrated insight into salinity response mechanisms in cucumber plants. Journal of Proteomics, 2015, 125: 54-67. doi: 10.1016/j.jprot.2015.05.001.
doi: 10.1016/j.jprot.2015.05.001
[17] 甄丽莎, 谷洁, 胡婷, 刘晨, 贾凤安, 吕睿. 石油烃类污染物降解动力学和微生物群落多样性分析. 农业工程学报, 2015, 31(15): 231-238.
ZHEN L S, GU J, HU T, LIU C, JIA F A, LÜ R. Kinetics of petroleum hydrocarbon degradation in soil and diversity of microbial community during composting. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 231-238. (in Chinese)
[18] AGUIRRE M, KIEGLE E, LEO G, EZQUER I. Carbohydrate reserves and seed development: An overview. Plant Reproduction, 2018, 31(3): 263-290. doi: 10.1007/s00497-018-0336-3.
doi: 10.1007/s00497-018-0336-3
[19] ZHAO D K, YU Y, SHEN Y, LIU Q, ZHAO Z W, SHARMA R, REITER R J. Melatonin synthesis and function: evolutionary history in animals and plants. Frontiers in Endocrinology, 2019, 10: 249. doi: 10.3389/fendo.2019.00249.
doi: 10.3389/fendo.2019.00249
[20] LÓPEZ-BUCIO J, NIETO-JACOBO M F, RAMÍREZ-RODRÍGUEZ V, HERRERA-ESTRELLA L. Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Science, 2000, 160(1): 1-13. doi: 10.1016/s0168-9452(00)00347-2.
doi: 10.1016/s0168-9452(00)00347-2
[21] 程少禹, 宣铃娟, 董彬, 顾翠花, 申亚梅, 张明如, 戴梦怡, 王卓为, 章颖佳, 陆丹迎. ‘红元宝’紫玉兰两次花芽分化差异代谢通路及关键调控基因筛选. 园艺学报, 2020, 47(8): 1490-1504. doi: 10.16420/j.issn.0513-353x.2019-0963.
doi: 10.16420/j.issn.0513-353x.2019-0963
CHENG S Y, XUAN L J, DONG B, GU C H, SHEN Y M, ZHANG M R, DAI M Y, WANG Z W, ZHANG Y J, LU D Y. Identification of differential metabolic pathways and key regulatory genes in the two flower bud differentiation processes of Magnolia liliiflora. Acta Horticulturae Sinica, 2020, 47(8): 1490-1504. doi: 10.16420/j.issn.0513-353x.2019-0963. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2019-0963
[22] 滑金杰, 王华杰, 王近近, 李佳, 江用文, 王岳梁, 袁海波. 采用PLS-DA分析毛火方式对工夫红茶品质的影响. 农业工程学报, 2020, 36(8): 260-270. doi: 10.11975/j.issn.1002-6819.2020.08.032.
doi: 10.11975/j.issn.1002-6819.2020.08.032
HUA J J, WANG H J, WANG J J, LI J, JIANG Y W, WANG Y L, YUAN H B. Influences of first-drying methods on the quality of Congou black tea using partial least squares-discrimination analysis. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(8): 260-270. doi: 10.11975/j.issn.1002-6819.2020.08.032. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2020.08.032
[23] 刘晓燕, 刘艳秋, 程孟春, 肖红斌. 超高效液相色谱-质谱联用技术在药物肝损伤代谢组学研究中的应用. 色谱, 2015, 33(7): 683-690. doi: 10.3724/SP.J.1123.2015.04007.
doi: 10.3724/SP.J.1123.2015.04007
LIU X Y, LIU Y Q, CHENG M C, XIAO H B. Application of ultra high performance liquid chromatography-mass spectrometry to metabolomics study of drug-induced hepatotoxicity. Chinese Journal of Chromatography, 2015, 33(7): 683-690. doi: 10.3724/SP.J.1123.2015.04007. (in Chinese)
doi: 10.3724/SP.J.1123.2015.04007
[24] LIU Y L, HOU W P, JIN J, CHRISTENSEN M J, GU L J, CHENG C, WANG J F. Epichloë gansuensis increases the tolerance of achnatherum inebrians to low-P stress by modulating amino acids metabolism and phosphorus utilization efficiency. Journal of Fungi (Basel, Switzerland), 2021, 7(5): 390.
[25] 于新超, 王晶, 朱美玉, 姜晶. 碳水化合物代谢参与番茄响应低磷胁迫的分子机制. 分子植物育种, 2015, 13(12): 2833-2842. doi: 10.13271/j.mpb.013.002833.
doi: 10.13271/j.mpb.013.002833
YU X C, WANG J, ZHU M Y, JIANG J. Molecular mechanism of carbohydrate metabolism participation in tomato response to low phosphorus stress. Molecular Plant Breeding, 2015, 13(12): 2833-2842. doi: 10.13271/j.mpb.013.002833. (in Chinese)
doi: 10.13271/j.mpb.013.002833
[26] GAO H Y, MAO H P, ULLAH I. Analysis of metabolomic changes in lettuce leaves under low nitrogen and phosphorus deficiencies stresses. Agriculture (Basel), 2020, 10(9): 406.
[27] 潘航, 冯缨, 王喜勇, 李岩. 荒漠环境下10种沙拐枣的生理特征比较研究. 草业学报, 2017, 26(6): 68-75.
PAN H, FENG Y, WANG X Y, LI Y. Examination and comparison of the physiological characteristics of ten Calligonum species in a desert environment. Acta Prataculturae Sinica, 2017, 26(6): 68-75. (in Chinese)
[28] 黄子凌, 李大勇, 宋凤鸣. 植物系统获得抗性中的系统信号及其作用机制. 植物生理学报, 2020, 56(7): 1346-1360. doi: 10.13592/j.cnki.ppj.2020.0071.
doi: 10.13592/j.cnki.ppj.2020.0071
HUANG Z L, LI D Y, SONG F M. Systemic signals and their mechanisms in plant systemic acquired resistance. Plant Physiology Journal, 2020, 56(7): 1346-1360. doi: 10.13592/j.cnki.ppj.2020.0071. (in Chinese)
doi: 10.13592/j.cnki.ppj.2020.0071
[29] 郭鹏飞, 雷健, 罗佳佳, 刘攀道, 虞道耿, 罗丽娟. 柱花草苯丙氨酸解氨酶(SgPALs)对生物胁迫与非生物胁迫的响应. 热带作物学报, 2019, 40(9): 1742-1751. doi: 10.3969/j.issn.1000-2561.2019.09.011.
doi: 10.3969/j.issn.1000-2561.2019.09.011
GUO P F, LEI J, LUO J J, LIU P D, YU D G, LUO L J. Response of phenylpropane ammonia-lyase on biotic and abiotic stress in Stylosanthes. Chinese Journal of Tropical Crops, 2019, 40(9): 1742-1751. doi: 10.3969/j.issn.1000-2561.2019.09.011. (in Chinese)
doi: 10.3969/j.issn.1000-2561.2019.09.011
[30] DU Y L, ZHAO Q, CHEN L R, YAO X D, ZHANG W, ZHANG B, XIE F T. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry, 2020, 146: 1-12. doi: 10.1016/j.plaphy.2019.11.003.
doi: 10.1016/j.plaphy.2019.11.003
[31] DALAL A, RANA J S, KUMAR A. Ultrasensitive nanosensor for detection of malic acid in tomato as fruit ripening indicator. Food Analytical Methods, 2017, 10(11): 3680-3686. doi: 10.1007/s12161-017-0919-x.
doi: 10.1007/s12161-017-0919-x
[32] SANGUBOTLA R, KIM J S. A facile enzymatic approach for selective detection of γ-aminobutyric acid using corn-derived fluorescent carbon dots. Applied Surface Science, 2019, 490: 61-69.
doi: 10.1016/j.apsusc.2019.05.320
[33] DUVANOVA O V, KRIVONOSOVA I A, ZYABLOV A N, FALALEEV A V, SELEMENEV V F, SOKOLOVA S A. Use of piezoelectric sensors for the determination of oleic and palmitic acids in vegetable oils. Inorganic Materials, 2018, 54(14): 1387-1391. doi: 10.1134/S002016851814008X.
doi: 10.1134/S002016851814008X
[34] SINGH A K, SINGH M. Designing L-serine targeted molecularly imprinted polymer via theoretical investigation. Journal of Theoretical and Computational Chemistry, 2016, 15(5): 1650041. doi: 10.1142/S0219633616500413.
doi: 10.1142/S0219633616500413
[35] LU Y L, HUANG Y X, LI S, ZHANG Q, WU J J, XIONG Z Y, XIONG L X, WAN Q Q, LIU Q J. Fat taste detection with odorant- binding proteins (OBPs) on screen-printed electrodes modified by reduced graphene oxide. Sensors & Actuators: B Chemical, 2017, 252: 973-982. doi: 10.1016/j.snb.2017.06.100.
doi: 10.1016/j.snb.2017.06.100
[1] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[2] SHENG HongJie, LU SuWen, ZHENG XuanAng, JIA HaiFeng, FANG JingGui. Identification and Comparative Analysis of Metabolites in Grape Seed Based on Widely Targeted Metabolomics [J]. Scientia Agricultura Sinica, 2023, 56(7): 1359-1376.
[3] ZHANG KaiJing, HE ShuaiShuai, JIA Li, HU YuChao, YANG DeKun, LU XiaoMin, ZHANG QiAn, YAN CongSheng. Genome-Wide Identification and Expression Analysis of DIR Gene Family in Cucumber [J]. Scientia Agricultura Sinica, 2023, 56(4): 711-728.
[4] WANG ZhuangZhuang, DONG ShaoYun, ZHOU Qi, MIAO Han, LIU XiaoPing, XU KuiPeng, GU XingFang, ZHANG ShengPing. Cloning and Analysis of Key Genes for Vitamin C Synthesis in Cucumber Fruit [J]. Scientia Agricultura Sinica, 2023, 56(3): 508-518.
[5] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[6] CHAI ALi, YANG HongMin, WANG ShaoHua, ZHAO Kun, GAO Wei, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu. Effect of Humidity on Sporulation and Release of Corynespora cassiicola and Control Technology [J]. Scientia Agricultura Sinica, 2023, 56(15): 2907-2918.
[7] YU LianWei, JIANG XingLin, YANG LingLing, WANG He, ZHANG YuYang, XIE LiNa, XIA ZiHao, LI HongLian, YANG Xue, SHI Yan. Function of Transcription Factor NbERF RAP2-1 in Cucumber Green Mottle Mosaic Virus Infection [J]. Scientia Agricultura Sinica, 2023, 56(15): 2919-2928.
[8] FENG XiangJun, WANG HongYu, YU Jing, CHI ChunYu, DING GuoHua. Overexpressing NPR1 from Arabidopsis thaliana Enhanced Resistance to Fusarium Wilt and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2023, 56(14): 2701-2712.
[9] CHEN ShuoTong, XIA Xin, DING YuanJun, FENG Xiao, LIU XiaoYu, Marios Drosos, LI LianQing, PAN GenXing. Changes in Topsoil Organic Matter Content and Composition of a Gleyic Stagnic Anthrosol Amended with Maize Residue in Different Forms from the Tai Lake Plain, China [J]. Scientia Agricultura Sinica, 2023, 56(13): 2518-2529.
[10] LIANG HaiWen, LAN PingXiu, LIU QinHai, TAN GuanLin, CHEN XiaoJiao, ZHAO Yan, LI Fan. Viruses Identification and Their Gene Sequences Analysis Infecting Aucuba japonica var. variegata [J]. Scientia Agricultura Sinica, 2023, 56(10): 1893-1904.
[11] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[12] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[13] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[14] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[15] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!