Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (15): 2919-2928.doi: 10.3864/j.issn.0578-1752.2023.15.007

• PLANT PROTECTION • Previous Articles     Next Articles

Function of Transcription Factor NbERF RAP2-1 in Cucumber Green Mottle Mosaic Virus Infection

YU LianWei1(), JIANG XingLin1, YANG LingLing1, WANG He1, ZHANG YuYang1, XIE LiNa1, XIA ZiHao5, LI HongLian1,3,4, YANG Xue1,2(), SHI Yan1()   

  1. 1 College of Plant Protection, Henan Agricultural University, Zhengzhou 450002
    2 Crop Science Postdoctoral Programme of Henan Agricultural University, Zhengzhou 450002
    3 Collaborative Innovation Centre of Henan Grain Crops, Zhengzhou 450002
    4 State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002
    5 College of Plant Protection, Shenyang Agricultural University, Shenyang 110866
  • Received:2023-05-11 Accepted:2023-06-10 Online:2023-08-01 Published:2023-08-05

Abstract:

【Background】 Cucumber green mottle mosaic virus (CGMMV) is an important quarantine plant virus in China, which has caused serious economic losses to vegetable and melon industry. The ERF transcription factor is involved in biotic and abiotic stress and the defense response against a variety of plant pathogens. In previous study, it was demonstrated that the host transcription factor NbERF RAP2-1 was significantly down-regulated after CGMMV infection.【Objective】 The objective of this study is to clarify the function of the ERF transcription factor family members in CGMMV infection, and to provide a theoretical basis for disease control caused by CGMMV.【Method】 MEGA7.0 was used to construct a phylogenetic tree to analyze the amino acid sequence of NbERF RAP2-1. The expression vector NbERF RAP2-1-GFP was constructed to observe the subcellular localization of NbERF RAP2-1. The transcript level of NbERF RAP2-1 at different stages of CGMMV infection was analyzed by qRT-PCR. VIGS and transient overexpression of NbERF RAP2-1 were conducted to analyze the function of NbERF RAP2-1 during CGMMV infection.【Result】 Phylogenetic tree analysis showed that NbERF RAP2-1 was highly homologous to ERF transcription factors in tobacco, and was far from ERF transcription factors in Arabidopsis thaliana. The results of subcellular localization showed that NbERF RAP2-1 was localized in the nucleus and acted as a transcription factor. The effect of CGMMV infection on the transcript level of the NbERF RAP2-1 showed that the expression level of NbERF RAP2-1 did not significantly change at the 6, 9, and 12 d after inoculation, but at the 15 and 18 d after inoculation, the expression level of NbERF RAP2-1 was significantly down-regulated. Tobacco rattle virus (TRV) mediated VIGS was used to silence the NbERF RAP2-1, and CGMMV was inoculated in TRV: NbERF RAP2-1 and TRV: 00 plants. At 8 d after inoculation, the leaves of TRV: 00 plants showed mottling and curling, while the TRV: NbERF RAP2-1 plants showed no symptoms. At the same time, the detection results of CGMMV RNA and protein levels showed that TRV: NbERF RAP2-1 could effectively inhibit the accumulation of CGMMV. Similarly, transient overexpression of NbERF RAP2-1 inhibited the accumulation of CGMMV at 24, 48, and 72 h, respectively.【Conclusion】 NbERF RAP2-1 effectively inhibit the initial CGMMV replication, i.e. the viral RNA replication stage. With the invasion of CGMMV, i.e. the intercellular and systemic movements of CGMMV, CGMMV recognizes and inhibits the transcript level of NbERF RAP2-1. When NbERF RAP2-1 is knocked down, that may inhibit the transcription of downstream proteins, thereby inhibiting the accumulation of CGMMV at a later stage. NbERF RAP2-1 plays an important role during the CGMMV infection.

Key words: cucumber green mottle mosaic virus (CGMMV), NbERF RAP2-1, pathogenic mechanism

Table 1

Nucleotide sequences of primers for vector construction"

引物名称Primer name 核苷酸序列Nucleotide sequence (5′-3′)
NbERF RAP2-1 GFP-F GGGGACAAGTTTGTACAGCAGGCTTCATGGAAGGAGGGTCATGTTGTT
NbERF RAP2-1 GFP-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTATAGCTAATTCCTCCCAGGTTTCTGG
NbERF RAP2-1 VIGS-F GGGGACAAGTTTGTACAGCAGGCTTCGTGGGTGGCAGAAATAAGAG
NbERF RAP2-1 VIGS-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTCTTGCGAATATCAGAAGCAGAG

Table 2

Nucleotide sequences of qRT-PCR-related primers"

引物名称
Primer name
核苷酸序列
Nucleotide sequence (5′-3′)
Nb UBC-RT-F GAGGAAGAGACTGGTGAGGGAT
Nb UBC-RT-R CACAGAGCAAAGACTGGATTGA
NbERF RAP2-1-RT-F ATGGAAGGAGGGTCATGTTG
NbERF RAP2-1-RT-R TTTAGCAGAAGGGCCTCTCA
CGMMV CP-RT-F CCAGACTCAAGCGGGAAGA
CGMMV CP-RT-R TCTACAACCTCAATGACCC

Fig. 1

Phylogenetic analysis of NbERF RAP2-1 based on its amino acid sequence"

Fig. 2

Subcellular localization of NbERF RAP2-1 and GFP"

Fig. 3

Transcription level of NbERF RAP2-1 at different stages of CGMMV infection Different letters on the bars represent significantly different at 0.05 level"

Fig. 4

Effect of NbERF RAP2-1 silencing on CGMMV infection Compared with control group, * means significant difference (P<0.05), ** means extremely significant difference (P<0.01). The same as below"

Fig. 5

Effect of transient overexpression of NbERF RAP2-1 on CGMMV infection"

[1]
LING K S, LI R, ZHANG W. First report of cucumber green mottle mosaic virus infecting greenhouse cucumber in Canada. Plant Disease, 2014, 98(5): 701.
[2]
DOMBROVSKY A, TRAN-NGUYEN L T T, JONES R A C. Cucumber green mottle mosaic virus: Rapidly increasing global distribution, etiology, epidemiology, and management. Annual Review of Phytopathology, 2017, 55: 231-256.

doi: 10.1146/annurev-phyto-080516-035349 pmid: 28590876
[3]
周红珍, 张志勇, 彭辉. 黄瓜绿斑驳花叶病毒病的发生症状及防控措施. 现代农业科技, 2013(18): 138, 140.
ZHOU H Z, ZHANG Z Y, PENG H. Occurrence symptoms and control measures of cucumber green mottle mosaic virus disease. Modern Agricultural Science and Technology, 2013(18): 138, 140. (in Chinese)
[4]
林燚, 杨瑜斌, 王驰, 王文华, 毛玲荣. 温台地区西瓜发生黄瓜绿斑驳花叶病毒病调查初报. 浙江农业科学, 2012(1): 83-85.
LIN Y, YANG Y B, WANG C, WANG W H, MAO L R. Investigation of cucumber green mottle mosaic virus disease on watermelon in Wentai region. Journal of Zhejiang Agricultural Sciences, 2012(1): 83-85. (in Chinese)
[5]
陈红运, 赵文军, 程毅, 李明福, 朱水芳. 辽中地区西瓜花叶病病原的分子鉴定. 植物病理学报, 2006, 36(4): 306-309.
CHEN H Y, ZHAO W J, CHENG Y, LI M F, ZHU S F. Molecular identification of the virus causing watermelon mosaic disease in Mid-Liaoning. Acta Phytopathologica Sinica, 2006, 36(4): 306-309. (in Chinese)
[6]
程兆榜, 任春梅, 缪倩, 王锋, 张重阳, 周益军, 范永坚. 江苏黄瓜绿斑驳花叶病毒的发生和防治. 江苏农业科学, 2013, 41(2): 114-117.
CHENG Z B, REN C M, MIAO Q, WANG F, ZHANG C Y, ZHOU Y J, FAN Y J. Occurrence and control of cucumber green mottle mosaic virus in Jiangsu. Jiangsu Agricultural Sciences, 2013, 41(2): 114-117. (in Chinese)
[7]
李小妮, 任小平, 王琳, 王明强, 周国辉. 广东省黄瓜绿斑驳花叶病毒分子检测及防疫. 植物保护学报, 2009, 36(3): 283-284.
LI X N, REN X P, WANG L, WANG M Q, ZHOU G H. Molecular detection and epidemic prevention of cucumber green mottle mosaic virus in Guangdong, China. Acta Phytopathologica Sinica, 2009, 36(3): 283-284. (in Chinese)
[8]
田永蕾, 刘冬梅, 张永江, 李明福, 马占鸿. 黄瓜绿斑驳花叶病毒北京和山东分离物的生物学测定及其基因组比较. 植物检疫, 2009, 23(6): 1-6.
TIAN Y L, LIU D M, ZHANG Y J, LI M F, MA Z H. Bioassay and genomic studies on the two isolates of cucumber green mottle mosaic virus from Beijing and Shandong. Plant Quarantine, 2009, 23(6): 1-6. (in Chinese)
[9]
赵慧茹, 林振亚, 朱俊子, 张亚东, 高必达. 湖南首次检测到黄瓜绿斑驳花叶病毒. 植物病理学报, 2013, 43(2): 219-221.
ZHAO H R, LIN Z Y, ZHU J Z, ZHANG Y D, GAO B D. First report of cucumber green mottle mosaic virus (CGMMV) in Hunan Province. Acta Phytopathologica Sinica, 2013, 43(2): 219-221. (in Chinese)
[10]
UGAKI M, TOMIYAMA M, KAKUTANI T, HIDAKA S, KIGUCHI T, NAGATA R, SATO T, MOTOYOSHI F, NISHIGUCHI M. The complete nucleotide sequence of cucumber green mottle mosaic virus (SH strain) genomic RNA. Journal of General Virology, 1991, 72(7): 1487-1495.

doi: 10.1099/0022-1317-72-7-1487
[11]
李俊香, 古勤生. 黄瓜绿斑驳花叶病毒传播方式的研究进展. 中国蔬菜, 2015(1): 13-18.
LI J X, GU Q S. Research progress on the transmission mode of cucumber green mottle mosaic virus. China Vegetables, 2015(1): 13-18. (in Chinese)
[12]
YANG L L, LI Q L, HAN X Y, JIANG X L, WANG H, SHI Y J, CHEN L L, LI H L, LIU Y Q, YANG X, SHI Y. A cysteine-rich secretory protein involves in phytohormone melatonin mediated plant resistance to CGMMV. BMC Plant Biology, 2023, 23(1): 215.

doi: 10.1186/s12870-023-04226-7
[13]
NAKANO T, SUZUKI K, FUJIMURA T, SHINSHI H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006, 140(2): 411-432.

doi: 10.1104/pp.105.073783
[14]
RIECHMANN J L, HEARD J, MARTIN G, REUBER L, JIANG C, KEDDIE J, ADAM L, PINEDA O, RATCLIFFE O J, SAMAHA R R, et al. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290(5499): 2105-2110.

doi: 10.1126/science.290.5499.2105 pmid: 11118137
[15]
MIZOI J, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 2012, 1819(2): 86-96.

doi: 10.1016/j.bbagrm.2011.08.004 pmid: 21867785
[16]
ZHU Y, ZHANG X, ZHANG Q, CHAI S, YIN W, GAO M, LI Z, WANG X. The transcription factors VaERF16 and VaMYB306 interact to enhance resistance of grapevine to Botrytis cinerea infection. Molecular Plant Pathology, 2022, 23(10): 1415-1432.

doi: 10.1111/mpp.v23.10
[17]
LI Y, LIU K, TONG G, XI C, LIU J, ZHAO H, WANG Y, REN D, HAN S. MPK3/MPK6-mediated phosphorylation of ERF72 positively regulates resistance to Botrytis cinerea through directly and indirectly activating the transcription of camalexin biosynthesis enzymes. Journal of Experimental Botany, 2022, 73(1): 413-428.

doi: 10.1093/jxb/erab415
[18]
YANG H, SUN Y, WANG H, ZHAO T, XU X, JIANG J, LI J. Genome-wide identification and functional analysis of the ERF2 gene family in response to disease resistance against Stemphylium lycopersici in tomato. BMC Plant Biology, 2021, 21(1): 72.

doi: 10.1186/s12870-021-02848-3
[19]
HONG Y, WANG H, GAO Y, BI Y, XIONG X, YAN Y, WANG J, LI D, SONG F. ERF transcription factor OsBIERF3 positively contributes to immunity against fungal and bacterial diseases but negatively regulates cold tolerance in rice. International Journal of Molecular Sciences, 2022, 23(2): 606.

doi: 10.3390/ijms23020606
[20]
LIU D, CHEN X, LIU J, YE J, GUO Z. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. Journal of Experimental Botany, 2012, 63(10): 3899-3911.

doi: 10.1093/jxb/ers079
[21]
HUANG Y, ZHANG B L, SUN S, XING G M, WANG F, LI M Y, TIAN Y S, XIONG A S. AP2/ERF transcription factors involved in response to tomato yellow leaf curly virus in tomato. The Plant Genome, 2016, 9(2). doi: 10.3835/plantgenome2015.09.0082.

doi: 10.3835/plantgenome2015.09.0082
[22]
ZHANG G, CHEN M, LI L, XU Z, CHEN X, GUO J, MA Y. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany, 2009, 60(13): 3781-3796.

doi: 10.1093/jxb/erp214 pmid: 19602544
[23]
TESORIERO L A, CHAMBERS G, SRIVASTAVA M, SMITH S, CONDE B, TRAN-NGUYEN L T T. First report of cucumber green mottle mosaic virus in Australia. Australasian Plant Disease Notes, 2016, 11: 1.
[24]
THIRUGNANASAMBANTHAM K, DURAIRAJ S, SARAVANAN S, KARIKALAN K, MURALIDARAN S, ISLAM V I H. Role of ethylene response transcription factor (ERF) and its regulation in response to stress encountered by plants. Plant Molecular Biology Reporter, 2015, 33(3): 347-357.

doi: 10.1007/s11105-014-0799-9
[25]
YANG R, LIU J, LIN Z, SUN W, WU Z, HU H, ZHANG Y. ERF transcription factors involved in salt response in tomato. Plant Growth Regulation, 2018, 84: 573-582.

doi: 10.1007/s10725-017-0362-4
[26]
PHUKAN U J, JEENA G S, TRIPATHI V, SHUKLA R K. MaRAP2-4, a waterlogging-responsive ERF from Mentha, regulates bidirectional sugar transporter AtSWEET10 to modulate stress response in Arabidopsis. Plant Biotechnology Journal, 2018, 16(1): 221-233.

doi: 10.1111/pbi.2018.16.issue-1
[27]
LI Z, ZHANG Y, REN J, JIA F, ZENG H, LI G, YANG X. Ethylene-responsive factor ERF114 mediates fungal pathogen effector PevD1-induced disease resistance in Arabidopsis thaliana. Molecular Plant Pathology, 2022, 23(6): 819-831.

doi: 10.1111/mpp.v23.6
[28]
ALAZEM M, HE M H, CHANG C H, CHENG N, LIN N S. Disrupting the homeostasis of high mobility group protein promotes the systemic movement of bamboo mosaic virus. Frontiers in Plant Science, 2020, 11: 597665.

doi: 10.3389/fpls.2020.597665
[29]
LIU A C, CHENG C P. Pathogen-induced ERF68 regulates hypersensitive cell death in tomato. Molecular Plant Pathology, 2017, 18(8): 1062-1074.

doi: 10.1111/mpp.2017.18.issue-8
[30]
CATINOT J, HUANG J B, HUANG P Y, TSENG M Y, CHEN Y L, GU S Y, LO W S, WANG L C, CHEN Y R, ZIMMERLI L. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate- and ethylene-responsive defence genes. Plant, Cell and Environment, 2015, 38(12): 2721-2734.

doi: 10.1111/pce.12583
[31]
JU S, GO Y S, CHOI H J, PARK J M, SUH M C. DEWAX transcription factor is involved in resistance to Botrytis cinerea in Arabidopsis thaliana and Camelina sativa. Frontiers in Plant Science, 2017, 8: 1210.

doi: 10.3389/fpls.2017.01210
[32]
DONG L, CHENG Y, WU J, CHENG Q, LI W, FAN S, JIANG L, XU Z, KONG F, ZHANG D, XU P, ZHANG S. Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean. Journal of Experimental Botany, 2015, 66(9): 2635-2647.

doi: 10.1093/jxb/erv078
[33]
ZHANG Y, ZHANG L, MA H, ZHANG Y, ZHANG X, JI M, VAN NOCKER S, AHMAD B, ZHAO Z, WANG X, GAO H. Overexpression of the apple (Malus × domestica) MdERF100 in Arabidopsis increases resistance to powdery mildew. International Journal of Molecular Sciences, 2021, 22(11): 5713.

doi: 10.3390/ijms22115713
[34]
LI H Y, XIAO S, CHYE M L. Ethylene- and pathogen-inducible Arabidopsis acyl-CoA-binding protein 4 interacts with an ethylene- responsive element binding protein. Journal of Experimental Botany, 2008, 59(14): 3997-4006.

doi: 10.1093/jxb/ern241
[35]
BÜTTNER M, SINGH K B. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(11): 5961-5966.
[36]
KIM N Y, JANG Y J, PARK O K. AP2/ERF family transcription factors ORA59 and RAP2.3 interact in the nucleus and function together in ethylene responses. Frontiers in Plant Science, 2018, 9: 1675.

doi: 10.3389/fpls.2018.01675 pmid: 30510560
[1] WU Hui-jie; QIN Bi-xia; CHEN Hong-yun; PENG Bin;CAI Jian-he; GU Qin-sheng. The Rate of Seed Contamination and Transmission of Cucumber green mottle mosaic virus in Watermelon and Melon [J]. Scientia Agricultura Sinica, 2011, 44(7): 1527-1532.
[2] Shi-Qiangg GAO Chenyang He. Transcriptional profile of plant pathogenic bacteria revealed by DNA microarray analysis [J]. Scientia Agricultura Sinica, 2008, 41(5): 1341-1346 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!