Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (7): 1371-1384.doi: 10.3864/j.issn.0578-1752.2022.07.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe

WANG Miao1(),ZHANG Yu1,LI RuiQiang2,XIN XiaoPing1,ZHU XiaoYu3,CAO Juan1,ZHOU ZhongYi4,YAN RuiRui1()   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Field Scientific Observation and Research Station of Hulunbuir Grassland Ecosystem, Beijing 100081
    2Inner Mongolia Autonomous Region Environmental Online Monitoring Centre, Hohhot 010055
    3Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191
    4Career Development Center of Yakeshi Forestry and Grassland Administration, Yakeshi 022150, Inner Mongolia
  • Received:2021-03-01 Accepted:2021-07-22 Online:2022-04-01 Published:2022-04-18
  • Contact: RuiRui YAN E-mail:wangmiao2021163@163.com;yanruirui@caas.cn

Abstract:

【Objective】Taking above-ground communities, stems and leaves as research objects, the effects of different grazing intensities on the contents of carbon (C), nitrogen (N) and phosphorus (P) elements and stoichiometric characteristics of plant components and plant communities were investigated, which provided a scientific basis for in-depth analysis of grassland ecosystem degradation process under grazing disturbance and promotion of adaptive management of grassland grazing. 【Method】Based on the long-term controlled grazing test platform of Leymus chinensis meadow grassland in Hulunbuir, the plant communities and plant samples of different components were collected. The contents of C, N and P were determined by elemental analysis method, and then the changes of C, N and P contents and the measurement ratio under different grazing intensities were analyzed. 【Result】With the increase of grazing intensity, the C content of plant stem, leaf and community showed a significant linear decrease, and the C content of heavy to extremely heavy grazing was significantly lower than that of no grazing (P<0.05). The N and P contents of the community were linearly increased, and the heavy to extremely grazing was significantly higher than that of no grazing (P<0.05). The stem-leaf ratio of C content was the lowest in moderate grazing (G0.46), while the stem-leaf ratio of N content was the highest in heavy grazing (G0.69), and the highest in P content (G0.34). The coefficients of variation of C content and N/P ratio in different plant organs were small, but the coefficients of variation of N and P contents were large. The variation coefficients of C content and N/P ratio of different components ranged from 4.01% to 5.74% and 2.84% to 8.54%, respectively. The variation coefficients of N and P contents of plants ranged from 11.47% to 14.96% and 11.13% to 22.88%, respectively, and the variation coefficients of C/N and C/P ratios ranged from 10.64% to 16.00% and 8.88% to 13.57%, respectively; among them, the coefficient of variation of the N/P ratio of plant leaves is the smallest, and the coefficient of variation of plant stem P content is the largest. The N/P ratio of leaves was between 14 and 16 under light grazing G0.34 and extremely heavy grazing G0.92, which was restricted by both N and P elements; while the other components were all lower than 14 under different grazing intensities, which was restricted by N. There was a significant negative correlation between grazing intensity and C content and C/N ratio of stem, leaf and community, and N/P ratio of stem and community, whilst they were significantly positively related to N content of stem, leaf and community, P content of plant leaf and community, and the N/P ratio of plant stem. The soil moisture was significantly positively correlated with the C content of plant leaves and community, the C/N ratio of stem, leaf and community, and the C/P ratio of stem and community, however, which were significantly negatively correlated the N content of stem, leaf and community and the P content of leaf and community. 【Conclusion】Grazing caused significant changes in plant C, N, P content, ecological stoichiometric ratio, and total community C, N, and P content. Overgrazing not only decreased the C content, C/N ratio and C/P ratio of plant stem, leaf and community, but also reduced the total C, N, and P content of the community, increased the N and P content of plant stem, leaf and community, and N/P ratio of plant stem, leaf and community. Moderate grazing decreased the C/N ratio of stem and leaf, and increased the C/P ratio and N/P ratio of stem and leaf, which was beneficial to promote the sustainable and stable development of grassland ecological functions.

Key words: meadow steppe, grazing intensity, carbon, nitrogen and phosphorus content, ecological stoichiometry characteristics, stem and leaf, community, Hulunbuir

Fig. 1

Design diagram of different grazing intensities The upper letter is the “test plot number”, where W-west, M-middle, E-east; the lower numbers and letters are “livestock grazing intensity”"

Table 1

Soil physical and chemical properties of different grazing intensities in 2020"

放牧强度
Grazing intensity
(Cow.Au·hm-2 )
土壤有机碳
Soil organic carbon
(g·kg-1)
土壤全氮
Soil total nitrogen
(g·kg-1)
土壤全磷
Soil total phosphorus
(g·kg-1)
土壤水分
Soil moisture
(%)
土壤温度
Soil temperature
(℃)
G0.00 40.78±0.22ab 3.66±0.02ab 0.58±0.02a 32.47±0.76a 21.97±1.85a
G0.23 38.35±2.15ab 3.42±0.13b 0.55±0.05a 30.60±1.46ab 23.36±2.91a
G0.34 40.49±0.10ab 3.93±0.25a 0.56±0.02a 31.06±0.73ab 23.14±2.65a
G0.46 41.55±0.66a 3.56±0.21ab 0.59±0.03a 31.14±0.43ab 23.12±2.92a
G0.69 37.71±0.50b 3.42±0.07b 0.58±0.03a 29.04±1.01ab 23.21±3.03a
G0.92 39.06±0.35ab 3.58±0.01ab 0.59±0.06a 27.78±2.18b 23.12±3.01a

Table 2

Variation characteristics of carbon, nitrogen and phosphorus contents in different organs under different grazing intensities"

日期
Date
参数
Parameter
器官
Organ
平均数
Mean
最小值
Minimum
最大值
Maximum
变异系数
Coefficient of variation (%)
2019 C (g·kg-1) 茎Stem 369.72 331.84 407.31 5.99
叶Leave 376.84 357.05 401.41 2.81
群落Community 384.14 360.05 404.52 3.41
N (g·kg-1) 茎Stem 14.66 10.24 17.94 14.50
叶Leave 20.40 16.93 23.75 7.78
群落Community 20.09 16.85 25.93 12.70
P (g·kg-1) 茎Stem 1.40 1.05 1.72 13.47
叶Leave 1.60 1.20 1.89 10.54
群落Community 1.63 1.26 1.97 12.81
2020 C (g·kg-1) 茎Stem 389.51 342.75 457.27 7.86
叶Leave 361.90 326.62 408.33 5.64
群落Community 373.33 330.63 424.29 6.13
N (g·kg-1) 茎Stem 14.51 10.85 20.70 17.60
叶Leave 23.00 17.42 44.51 26.31
群落Community 19.70 16.87 23.37 11.97
P (g·kg-1) 茎Stem 1.46 1.02 3.57 37.38
叶Leave 1.60 0.92 2.09 17.25
群落Community 1.44 0.81 1.82 15.03
两年均值
Two years
mean
C (g·kg-1) 茎Stem 379.62 345.14 425.42 5.74
叶Leave 369.37 350.74 393.39 3.09
群落Community 378.73 358.97 402.68 4.01
N (g·kg-1) 茎Stem 14.59 11.59 19.32 14.11
叶Leave 21.70 18.56 32.68 14.96
群落Community 19.89 16.93 24.65 11.47
P (g·kg-1) 茎Stem 1.43 1.12 2.64 22.88
叶Leave 1.60 1.20 1.99 11.13
群落Community 1.54 1.04 1.83 12.57

Fig. 2

Annual stoichiometric characteristics of stem, leaf and community under different grazing intensities Different letters indicate significant difference (P<0.05), while same letters indicate no significant difference (P>0.05). The same as below"

Fig. 3

Carbon content in stem, leaf and community and ratio of stem to leaf under different grazing intensities"

Fig. 4

Nitrogen content in stem, leaf and community and ratio of stem to leaf under different grazing intensities"

Fig. 5

Phosphorus content in stem, leaf and community and ratio of stem to leaf under different grazing intensities"

Table 3

Correlation between measurement ratio of carbon, nitrogen and phosphorus content in plant stem and leaves and grazing intensity"

C (g·kg-1) N (g·kg-1) P (g·kg-1) C﹕N C﹕P N﹕P
放牧强度
Grazing intensity
茎Stem -0.656** 0.825** 0.304 -0.876** -0.598** 0.505*
叶Leave -0.737** 0.706** 0.535* -0.839** -0.449 0.428
群落Community -0.753** 0.861** 0.840** -0.900** -0.752** 0.172
土壤温度
Soil temperature (℃)
茎Stem 0.19 0.205 0.574* -0.146 -0.252 -0.143
叶Leave -0.467 -0.056 0.051 -0.112 -0.204 -0.135
群落Community 0.007 0.184 0.187 -0.133 -0.421 -0.377
土壤水分
Soil moisture (%)
茎Stem 0.364 -0.670** -0.402 0.671** 0.619** -0.17
叶Leave 0.674** -0.558* -0.474* 0.686** 0.414 -0.283
群落Community 0.470* -0.644** -0.720** 0.611** 0.751** 0.182
土壤碳含量
Soil carbon content
(g·kg-1)
茎Stem 0.289 -0.656** -0.504* 0.631** 0.631** -0.105
叶Leave 0.639** -0.556* -0.409 0.668** 0.416 -0.269
群落Community 0.471* -0.583* -0.781** 0.564* 0.706** 0.196
土壤氮含量
Soil nitrogen content (g·kg-1)
茎Stem 0.401 -0.636** -0.291 0.658** 0.567* -0.212
叶Leave 0.657** -0.522* -0.495* 0.654** 0.384 -0.275
群落Community 0.438 -0.650** -0.622** 0.608** 0.738** 0.158
土壤磷含量
Soil phosphorus content (g·kg-1)
茎Stem -0.316 0.392 0.314 -0.348 -0.247 0.239
叶Leave -0.145 0.183 0.169 -0.051 0.051 0.258
群落Community -0.104 0.005 0.046 -0.049 0.088 0.146

Fig. 6

Community biomass and total uptake of carbon, nitrogen and phosphorus under different grazing intensities"

[1] ELDRIDGE D J, DELGADO-BAQUERIZO M, TRAVERS S K, VAL J, OLIVER I, HAMONTS K, SINGH B K. Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores. Ecology, 2017, 98(7):1922-1931.
doi: 10.1002/ecy.1879
[2] 牛得草, 董晓玉, 傅华. 长芒草不同季节碳氮磷生态化学计量特征. 草业科学, 2011, 28(6):915-920.
NIU D C, DONG X Y, FU H. Seasonal dynamics of carbon, nitrogen and phosphorus stoichiometry in Stipa bungeana. Pratacultural Science, 2011, 28(6):915-920. (in Chinese)
[3] 许雪贇, 曹建军, 杨淋, 杨书荣, 龚毅帆, 李梦天. 放牧与围封对青藏高原草地土壤和植物叶片化学计量学特征的影响. 生态学杂志, 2018, 37(5):1349-1355.
XU X Y, CAO J J, YANG L, YANG S R, GONG Y F, LI M T. Effects of grazing and enclosure on foliar and soil stoichiometry of grassland on the Qinghai-Tibetan Plateau. Chinese Journal of Ecology, 2018, 37(5):1349-1355. (in Chinese)
[4] 郑伟. 封育对伊犁绢蒿种群营养元素分配格局及贮量的影响. 草业科学, 2012, 29(10):1503-1511.
ZHENG W. Effects of enclosure on storage and allocation of carbon and nutrient elements in Seriphidium transiliense population. Pratacultural Science, 2012, 29(10):1503-1511. (in Chinese)
[5] 丁小慧, 宫立, 王东波, 伍星, 刘国华. 放牧对呼伦贝尔草地植物和土壤生态化学计量学特征的影响. 生态学报, 2012, 32(15):4722-4730.
doi: 10.5846/stxb201104200523
DING X H, GONG L, WANG D B, WU X, LIU G H. Grazing effects on eco-stoichiometry of plant and soil in Hulunbeir, Inner Mogolia. Acta Ecologica Sinica, 2012, 32(15):4722-4730. (in Chinese)
doi: 10.5846/stxb201104200523
[6] FRANK D A. Ungulate and topographic control of nitrogen: phosphorus stoichiometry in a temperate grassland; soils, plants and mineralization rates. Oikos, 2008, 117(4):591-601.
doi: 10.1111/j.0030-1299.2008.16220.x
[7] HAN W X, FANG J Y, GUO D L, ZHANG Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 2005, 168(2):377-385.
doi: 10.1111/j.1469-8137.2005.01530.x
[8] 李香真, 陈佐忠. 不同放牧率对草原植物与土壤C、N、P含量的影响. 草地学报, 1998, 6(2):90-98.
LI X Z, CHEN Z Z. Influences of stocking rates on C, N, P contents in plant-soil system. Acta Agrestia Sinica, 1998, 6(2):90-98. (in Chinese)
[9] 张婷, 翁月, 姚凤娇, 史印涛, 崔国文, 胡国富. 放牧强度对草甸植物小叶章及土壤化学计量比的影响. 草业学报, 2014, 23(2):20-28.
ZHANG T, WENG Y E, YAO F J, SHI Y T, CUI G W, HU G F. Effect of grazing intensity on ecological stoichiometry of Deyeuxia angustifolia and meadow soil. Acta Prataculturae Sinica, 2014, 23(2):20-28. (in Chinese)
[10] 李香真, 邢雪荣, 陈佐忠. 不同放牧率对旱黄梅衣生物量和化学元素组成的影响. 应用生态学报, 2001, 12(3):369-373.
LI X Z, XING X R, CHEN Z Z. Effect of grazing rate on biomass and element composition of Xanthoparmelia camtschadalis. Chinese Journal of Applied Ecology, 2001, 12(3):369-373. (in Chinese)
[11] BARDGETT R D, WARDLE D A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 2003, 84(9):2258-2268.
doi: 10.1890/02-0274
[12] 张宇, 侯路路, 闫瑞瑞, 辛晓平. 放牧强度对草甸草原植物群落特征及营养品质的影响. 中国农业科学, 2020, 53(13):2550-2561.
ZHANG Y, HOU L L, YAN R R, XIN X P. Effects of grazing intensity on plant community characteristics and nutrient quality of herbage in a meadow steppe. Scientia Agricultura Sinica, 2020, 53(13):2550-2561. (in Chinese)
[13] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis.3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[14] 李红林, 贡璐, 洪毅. 克里雅绿洲旱生芦苇根茎叶C、N、P化学计量特征的季节变化. 生态学报, 2016, 36(20):6547-6555.
LI H L, GONG L, HONG Y. Seasonal variations in C, N, and P stoichiometry of roots, stems, and leaves of Phragmites australis in the Keriya Oasis, Xinjiang, China. Acta Ecologica Sinica, 2016, 36(20):6547-6555. (in Chinese)
[15] 贺合亮, 阳小成, 李丹丹, 尹春英, 黎云祥, 周国英, 张林, 刘庆. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征. 植物生态学报, 2017(1):126-135.
doi: 10.17521/cjpe.2016.0031
HE H L, YANG X C, LI D D, YIN C Y, LI Y X, ZHOU G Y, ZHANG L, LIU Q. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shrub on the eastern Qinghai- Xizang Plateau. Chinese Journal of Plant Ecology, 2017(1):126-135. (in Chinese)
doi: 10.17521/cjpe.2016.0031
[16] HE J S, FANG J Y, WANG Z H, GUO D L, FLYNN D F B, GENG Z, Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 2006, 149(1):115-122.
doi: 10.1007/s00442-006-0425-0
[17] 韩文轩, 吴漪, 汤璐瑛, 陈雅涵, 李利平, 贺金生, 方精云. 北京及周边地区植物叶的碳氮磷元素计量特征. 北京大学学报(自然科学版), 2009, 45(5):855-860.
HAN W X, WU Y, TANG L Y, CHEN Y H, LI L P, HE J S, FANG J Y. Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in Beijing and its periphery. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(5):855-860. (in Chinese)
[18] 任书杰, 于贵瑞, 陶波, 王绍强. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 2007, 28(12):2665-2673.
REN S J, YU G R, TAO B, WANG S Q. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC. Environmental Science, 2007, 28(12):2665-2673. (in Chinese)
[19] 范月君, 侯向阳, 石红霄, 师尚礼. 封育与放牧对三江源区高寒草甸植物和土壤碳储量的影响. 草原与草坪, 2012, 32(5):41-46, 52.
FAN Y J, HOU X Y, SHI H X, SHI S L. The response of carbon reserves of plants and soils to different grassland managements on alpine meadow of three headwater source regions. Grassland and Turf, 2012, 32(5):41-46, 52. (in Chinese)
[20] 鄢燕, 马星星, 鲁旭阳. 人为干扰对藏北高寒草原群落生物量及其碳氮磷含量特征的影响. 山地学报, 2014, 32(4):460-466.
YAN Y, MA X X, LU X Y. Effect of human disturbance on plant biomass and CNP contents of the alpine steppe in northern Tibet. Mountain Research, 2014, 32(4):460-466. (in Chinese)
[21] LI X L, LIU Z Y, REN W B, DING Y, JI L, GUO F H, HOU X Y. Linking nutrient strategies with plant size along a grazing gradient: Evidence from Leymus chinensis in a natural pasture. Journal of Integrative Agriculture, 2016, 15(5):1132-1144.
doi: 10.1016/S2095-3119(15)61171-6
[22] 孙宗玖, 李培英. 放牧对伊犁绢蒿叶片碳氮磷化学计量特征的影响. 中国草学会第九次全国会员代表大会暨学术讨论会论文集. 2016: 7.
SUN Z J, LI P Y. Effects of grazing on carbon, nitrogen and phosphorus stoichiometry in leaves of Seriphidium iliense//The Ninth National Member Congress of China Grass Society and Academic Symposium Proceedings. China Grass Society, 2016: 7. (in Chinese)
[23] 翟夏杰, 黄顶, 王堃. 围封与放牧对典型草原植被和土壤的影响. 中国草地学报, 2015, 37(6):73-78.
ZHAI X J, HUANG D, WANG K. Effects of fencing and grazing on vegetation and soil in typical grassland. Chinese Journal of Grassland, 2015, 37(6):73-78. (in Chinese)
[24] 仲延凯, 孙维, 孙卫国, 包青海. 割草对典型草原植物营养元素贮量及分配的影响 Ⅳ.土壤—植物营养元素含量的比较. 干旱区资源与环境, 2000, 14(1):55-63.
ZHONG Y K, SUN W, SUN W G, BAO Q H. Influence of mowing on storing amount and distribution of nutrient elements in typical steppe Ⅳ A comparative study on nutrient element contents of soil and plant. Journal of Arid Land Resources and Environment, 2000, 14(1):55-63. (in Chinese)
[25] BAI Y F, WU J G, CLARK C M, PAN Q M, ZHANG L X, CHEN S P, WANG Q B, HAN X G. Grazing alters ecosystem functioning and C: N:P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 2012, 49(6):1204-1215.
doi: 10.1111/j.1365-2664.2012.02205.x
[26] 宋智芳, 安沙舟, 孙宗玖. 放牧地伊犁绢蒿营养元素分配特点. 草业科学, 2014, 31(1):132-138.
SONG Z F, AN S Z, SUN Z J. Characteristics of nutrition allocation of Seriphidium transiliense under grazing condition. Pratacultural Science, 2014, 31(1):132-138. (in Chinese)
[27] CUI X Y, WANG Y F, NIU H S, WU J, WANG S P, SCHNUG E, ROGASIK J, FLECKENSTEIN J, TANG Y H. Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia. Ecological Research, 2005, 20(5):519-527.
doi: 10.1007/s11284-005-0063-8
[28] JIA B R, ZHOU G S, WANG F Y, WANG Y H, WENG E S. Effects of grazing on soil respiration of Leymus chinensis steppe. Climatic Change, 2007, 82(1):211-223.
doi: 10.1007/s10584-006-9136-0
[29] 黄小波, 刘万德, 苏建荣, 李帅锋, 郎学东. 云南普洱季风常绿阔叶林152种木本植物叶片C、N、P化学计量特征. 生态学杂志, 2016, 35(3):567-575.
HUANG X B, LIU W D, SU J R, LI S F, LANG X D. Stoichiometry of leaf C, N and P across 152 woody species of a monsoon broad-leaved evergreen forest in Pu'er, Yunnan Province. Chinese Journal of Ecology, 2016, 35(3):567-575. (in Chinese)
[30] 白永飞, 黄建辉, 郑淑霞, 潘庆民, 张丽霞, 周华坤, 徐海量, 李玉霖, 马健. 草地和荒漠生态系统服务功能的形成与调控机制. 植物生态学报, 2014, 38(2):93-102.
doi: 10.3724/SP.J.1258.2014.00009
BAI Y F, HUANG J H, ZHENG S X, PAN Q M, ZHANG L X, ZHOU H K, XU H L, LI Y L, MA J. Drivers and regulating mechanisms of grassland and desert ecosystem services. Chinese Journal of Plant Ecology, 2014, 38(2):93-102. (in Chinese)
doi: 10.3724/SP.J.1258.2014.00009
[31] 丁莉君, 卫智军, 张爽, 刘佳, 吕世杰. 放牧强度季节调控对荒漠草原土壤和植物养分的影响. 草原与草业, 2019, 31(1):53-59.
DING L J, WEI Z J, ZHANG S, LIU J, LÜ S J. Effects of seasonal regulation of grazing intensity on soil and plant nutrients in desert steppe. Grassland and Prataculture, 2019, 31(1):53-59. (in Chinese)
[32] 李从娟, 雷加强, 徐新文, 唐清亮, 高培, 王永东. 塔克拉玛干沙漠腹地人工植被及土壤CNP的化学计量特征. 生态学报, 2013, 33(18):5760-5767.
doi: 10.5846/stxb201304300872
LI C J, LEI J Q, XU X W, TANG Q L, GAO P, WANG Y D. The stoichiometric characteristics of C, N, P for artificial plants and soil in the hinterland of Taklimakan Desert. Acta Ecologica Sinica, 2013, 33(18):5760-5767. (in Chinese)
doi: 10.5846/stxb201304300872
[33] MAMOLOS A P, VASILIKOS C V, VERESOGLOU D S. Vegetation in contrasting soil water sites of upland herbaceous grasslands and N: P ratios as indicators of nutrient limitation. Plant and Soil, 2005, 270(1):355-369.
doi: 10.1007/s11104-004-1793-z
[34] 吴统贵, 吴明, 刘丽, 萧江华. 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化. 植物生态学报, 2010, 34(1):23-28.
doi: 10.3773/j.issn.1005-264x.2010.01.005
WU T G, WU M, LIU L, XIAO J H. Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China. Chinese Journal of Plant Ecology, 2010, 34(1):23-28. (in Chinese)
doi: 10.3773/j.issn.1005-264x.2010.01.005
[35] KOERSELMAN W, MEULEMAN A F M. The vegetation N: P ratio: A new tool to detect the nature of nutrient limitation. The Journal of Applied Ecology, 1996, 33(6):1441.
doi: 10.2307/2404783
[36] HE J S, WANG L A, FLYNN D F B, WANG X P, MA W H, FANG J Y. Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 2008, 155(2):301-310.
doi: 10.1007/s00442-007-0912-y
[37] 董晓玉. 放牧与围封对黄土高原典型草原植物碳、氮、磷生态计量特征及其贮量的影响[D]. 兰州: 兰州大学, 2009.
DONG X Y. The effect of grazing and fencing on ecological stoichiometry of carbon, nitrogen, phosphorus and their storages in steppe grasslands of loess plateau[D]. Lanzhou: Lanzhou University, 2009. (in Chinese)
[38] 董晓玉, 傅华, 李旭东, 牛得草, 郭丁, 李晓东. 放牧与围封对黄土高原典型草原植物生物量及其碳氮磷贮量的影响. 草业学报, 2010, 19(2):175-182.
DONG X Y, FU H, LI X D, NIU D C, GUO D, LI X D. Effects on plant biomass and CNP contents of plants in grazed and fenced steppe grasslands of the Loess Plateau. Acta Prataculturae Sinica, 2010, 19(2):175-182. (in Chinese)
[39] ELSER J J, STERNER R W, GOROKHOVA E, FAGAN W F, MARKOW T A, COTNER J B, HARRISON J F, HOBBIE S E, ODELL G M, WEIDER L W. Biological stoichiometry from genes to ecosystems. Ecology Letters, 2000, 3(6):540-550.
doi: 10.1111/j.1461-0248.2000.00185.x
[40] HEDIN L O. Global organization of terrestrial plant-nutrient interactions. PNAS, 2004, 101(30):10849-10850.
doi: 10.1073/pnas.0404222101
[41] 侯路路, 闫瑞瑞, 张宇, 辛晓平. 放牧强度对草甸草原羊草功能性状的影响. 中国农业科学, 2020, 53(13):2562-2572.
HOU L L, YAN R R, ZHANG Y, XIN X P. Effects of grazing intensity on functional traits of Leymus chinensis in meadow steppe. Scientia Agricultura Sinica, 2020, 53(13):2562-2572. (in Chinese)
[1] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[2] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[3] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[4] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[5] WANG Liang,LIU YuanYuan,QIAN Xin,ZHANG Hui,DAI HongCui,LIU KaiChang,GAO YingBo,FANG ZhiJun,LIU ShuTang,LI ZongXin. The Single Season Wheat Straw Returning to Promote the Synergistic Improvement of Carbon Efficiency and Economic Benefit in Wheat- Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2022, 55(2): 350-364.
[6] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[7] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[8] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[9] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[10] YANG Jing,ZHANG He,LI ShuangShuang,LI GuiHua,ZHANG JianFeng. Effects of Amendments on Soil Fauna Community Characteristics in a Fluvo-Aquic Sandy Soil [J]. Scientia Agricultura Sinica, 2022, 55(16): 3185-3199.
[11] WAN LianJie,HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties [J]. Scientia Agricultura Sinica, 2022, 55(15): 2988-3001.
[12] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[13] BiSheng WANG,WeiShui YU,XuePing WU,LiLi GAO,Jing LI,XiaoJun SONG,ShengPing LI,JinJing LU,FengJun ZHENG,DianXiong CAI. Effects of Straw Addition on Soil Organic Carbon and Related Factors Under Different Tillage Practices [J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187.
[14] MingHui HAN,BaoGuo LI,Dan ZHANG,Ying LI. Regenerative Agriculture-Sustainable Agriculture Based on the Conservational Land Use [J]. Scientia Agricultura Sinica, 2021, 54(5): 1003-1016.
[15] Xue BAI,Teng HUI,ZhenYu WANG,YunGang CAO,DeQuan ZHANG. Determination of 5 Nitropolycyclic Aromatic Hydrocarbons in Roasted Meat Products by High Performance Liquid Chromatography- Fluorescence Detection [J]. Scientia Agricultura Sinica, 2021, 54(5): 1055-1062.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!