Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (2): 233-247.doi: 10.3864/j.issn.0578-1752.2022.02.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties

JIANG Peng1(),ZHANG Peng1(),YAO JinBao1,WU Lei1,HE Yi1,LI Chang1,MA HongXiang2(),ZHANG Xu1()   

  1. 1Jiangsu Academy of Agricultural Sciences/Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry/CIMMYT-JAAS Joint Center for Wheat Diseases, Nanjing 210014
    2College of Agriculture, Yangzhou University/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Jiangsu Key Lab of Crop Genomics and Molecular Breeding/Key Lab of Plant Functional Genomics of the Ministry of Education, Yangzhou 225009, Jiangsu
  • Received:2021-07-04 Accepted:2021-08-20 Online:2022-01-16 Published:2022-01-26
  • Contact: HongXiang MA,Xu ZHANG E-mail:hmjp2005@163.com;jszhangpeng@163.com;mahx@yzu.edu.cn;xuzhang@jaas.ac.cn

Abstract:

【Objective】The phenotypic characteristics, genetic diversity and distribution of the loci controlling important traits in Ningmai series varieties (lines) were clarified by analyzing the main traits of Ningmai series varieties and the genotype of the varieties and lines in order to provide a basis for genetic improvement and utilization in breeding and production. 【Method】The main traits including yield, quality and disease resistance of the twenty-three approved varieties were analyzed, and all the approved varieties and lines were genotyped with Affymetrix 50K array, and some other functional genes were identified additionally. 【Result】Ningmai series wheat varieties had good performance in yield, medium and weak gluten quality, and resistance to Fusarium head blight (FHB), and poor performance in resistance to powdery mildew and rust. After quality control, 28 253 high-quality SNPs were obtained. The genetic similarity coefficients among the 23 approved varieties ranged from 0.407 to 0.964, with an average of 0.600, and ranged from 0.456 to 0.985 for those among 51 high-generation lines, with an average of 0.684. The spring habit of Ningmai series varieties (lines) was mainly caused by the variation of Vrn-D1, and Ppd-D1 made all materials photoperiod insensitive. Rht-B1b was mostly present in Ningmai series varieties (lines) to reduce the plant height, and there were lots of favorable alleles on thousand grain weight and pre-harvest sprouting. 48.6% of Ningmai series varieties (lines) had the major resistance gene Fhb1 to FHB, and nearly 30% carried the major resistance gene Pm21 to powdery mildew. 【Conclusion】The genetic diversity of Ningmai series varieties (lines) showed a decreasing trend, and it was necessary to strengthen germplasm innovation and broaden genetic background. Ningmai series varieties (lines) carried many favorable genes on thousand grain weight, pre-harvest sprouting and resistance to FHB, and could be used as excellent parents for genetic improvement of wheat varieties. Ningmai series varieties were mainly medium and weak gluten quality type, and the selection of medium-strong gluten and strong gluten varieties needed to be taken into account, as well as the resistance to powdery mildew and rust.

Key words: Ningmai, pedigree, genetic diversity, molecular breeding

Fig. 1

Pedigrees of Ningmai series wheat cultivars"

Table 1

The performance of main traits in Ningmai series wheat cultivars"

品种
Varieties
株高
Plant height
(cm)
穗数
Spike number (×104·hm-2)
穗粒数
Kernel number per spike
千粒重
1000-kernel weight (g)
产量
Yield
(kg·hm-2)
对照品种
Check
增产幅度
Increase rate (%)
籽粒蛋白含量
Grain protein content (%)
稳定时间
Stability time (min)
赤霉病
Fusarium head blight
白粉病
Powdery mildew
纹枯病
Sharp eyespot
黄花叶病
Yellow mosaic disease
叶锈病
Leaf
rust
条锈病
Yellow rust
宁麦7号
Ningmai 7
85.0 - 39.20 34.10 5849.40 扬麦5号
Yangmai 5
6.85 11.23 4.65 MR/MS MS MS R S S
宁麦8号
Ningmai 8
80.0—85.0 424.5 40.30 37.40 6322.80 扬麦158
Yangmai 158
2.42 11.30 2.50 MR MR MS MS S S
宁麦9号
Ningmai 9
85.0 465.0 44.30 35.60 6828.75 扬麦158
Yangmai 158
5.38 12.20 2.30 MR MS MR R MR MR
宁麦10号
Ningmai 10
95.0 - 36.00 40.00 5973.60 扬麦158
Yangmai 158
3.56 13.50 3.30 MR MS MR MS S S
宁麦11
Ningmai 11
85.0 495.0 33.00 40.00 6735.00 豫麦18
Yumai 18
8.57 14.90 6.60 MS MS MS S S S
宁麦12
Ningmai 12
90.0 375.0 38.00 39.00 6002.70 扬麦158
Yangmai 158
9.15 15.94 18.54 MR MS MS S S S
宁麦13
Ningmai 13
85.0 480.0 37.00 36.00 6350.55 扬麦158
Yangmai 158
9.14 10.90 2.10 MR S MS R MS S
宁麦14
Ningmai 14
85.0 495.00 38.00 41.00 6802.50 扬麦11
Yangmai 11
2.17 14.30 2.60 MR MS S MS MS S
宁麦15
Ningmai 15
95.0 435.00-450.00 >40.00 >40.00 6373.20 扬麦158
Yangmai 158
7.10 13.48 4.80 MR S MR R S S
宁麦16
Ningmai 16
86.0 300.00—480.00 41.00—45.00 39.00—41.00 6920.85 扬麦11
Yangmai 11
4.47 13.20 8.30 R/MR MS MR/MS R S S
宁麦17
Ningmai 17
92.5 420.00 41.85 45.76 7102.50 扬麦11
Yangmai 11
7.10 13.30 3.20 MR MS MS R S S
宁麦18
Ningmai 18
92.2 500.00 43.20 36.30 6768.45 扬麦11
Yangmai 11
4.63 12.43 2.15 R/MR R/MR MS/S R S S
宁麦19
Ningmai 19
86.9 430.00 40.00 39.70 6159.15 扬麦11
Yangmai 11
8.43 13.10 4.70 MR/MS S MS R S S
宁麦20
Ningmai 20
85.0 468.00 39.10 39.00 5782.20 扬麦11
Yangmai 11
1.79 14.70 8.80 R MS MS R S S
宁麦21
Ningmai 21
86.6 450.0 38.00—40.00 45.00 6511.65 扬麦11
Yangmai 11
5.56 13.94 4.67 MR S MS S S S
宁麦22
Ningmai 22
85.0 460.0 42.07 43.70 5940.00 扬麦158
Yangmai 158
7.60 12.57 6.10 MR/MS MS/S MS/S R S S
宁麦23
Ningmai 23
95.0 496.5 45.35 42.43 6013.95 扬麦158
Yangmai 158
9.51 13.23 3.60 MR S MR/MS R S S
宁麦24
Ningmai 24
80.0 532.5 40.10 39.90 6439.95 扬麦158
Yangmai 158
9.36 12.59 5.00 MR MR/MS S R S S
宁麦26
Ningmai 26
79.0 496.4 34.61 43.21 6793.20 扬麦11
Yangmai 11
6.72 14.80 10.30 MR S MR R S S
宁麦27
Ningmai 27
84.5 465.2 41.80 39.70 6342.75 扬麦20
Yangmai 20
6.00 11.40 3.00 MR S MS R S S
宁麦28
Ningmai 28
85.3 481.5 39.10 41.20 6789.75 扬麦20
Yangmai 20
4.32 14.00 4.30 MR S S MR S S

Table 2

Distribution of the loci related to important traits in Ningmai series varieties (lines)"

性状 Traits 基因 Gene 标记 Marker 来源 Source 基因型A Genotype A (%) 表型A Phenotype A 基因型B Genotype B (%) 表型B Phenotype B
春化
Vernalization
Vrn-A1 AX-86162267 SNP芯片SNP array vrn-A1 (100) 冬性Winter Vrn-A1 (0) 春性Spring
AX-176643931 SNP芯片SNP array Vrn-A1b (100) 冬性Winter Vrn-A1a (0) 春性Spring
AX-86170790 SNP芯片SNP array Jagger type (16.7) 春化时间短
Short time of vernalization
2147 type (83.3) 春化时间长
Long time of vernalization
AX-86170797 SNP芯片SNP array Calire-type (16.2) 早花Early flower Hereward-type (81.1) 晚花Late flower
Vrn-B1 AX-179476571 SNP芯片SNP array vrn-B1/Vrn-B1c (100) 冬性Winter Vrn-B1a,b (0) 春性Spring
AX-176643317 SNP芯片SNP array Null (100) 冬性Winter Vrn-B1b (0) 春性Spring
Vrn-D1 AX-89774282 SNP芯片SNP array Null (5.4) 冬性Winter Vrn-D1a (93.2) 春性Spring
光周期
Photoperiod sensitivity
Ppd-A1 AX-179399168 SNP芯片SNP array Wildtype (100) 敏感Sensitive GS-100 type (0) 迟钝Insensitive
AX-179399166 SNP芯片SNP array Wildtype (100) 敏感Sensitive GS-105 type (0) 迟钝Insensitive
Ppd-B1 AX-179477452 SNP芯片SNP array Non-truncated (100) 敏感Sensitive truncated copy (0) 迟钝Insensitive
Ppd-D1 AX-179399165 SNP芯片SNP array Wildtype (0) 敏感Sensitive Deletion (100) 迟钝Insensitive
AX-179477451 SNP芯片SNP array Insertion (0) 敏感Sensitive Wildtype (100) 迟钝Insensitive
AX-179476570 SNP芯片SNP array Wildtype (100) 敏感Sensitive Deletion (0) 迟钝Insensitive
株高
Plant height
Rht-B1 AX-86170699 SNP芯片SNP array Rht-B1a (0) 野生型Wild type Rht-B1b (100) 矮秆Dwarf
Rht-D1 AX-86170702 SNP芯片SNP array Rht-D1a (100) 野生型Wild type Rht-D1b (0) 矮秆Dwarf
千粒重
Thousand grain weight
TaSus2-A1 AX-176643663 SNP芯片SNP array Hap-G (0) 低千粒重Lower TGW Hap-A (100) 高千粒重Higher TGW
TaCwi AX-86170752 SNP芯片SNP array TaCwi-A1b (100) 低千粒重Low TGW TaCwi-A1a (0) 高千粒重High TGW
TaGS2-A1 AX-179477467 SNP芯片SNP array TaGS2-A1b (87.3) 高千粒重High TGW TaGS2-A1a (12.7) 低千粒重Low TGW
TaSus2-B1 AX-94980963 SNP芯片SNP array Hap-L (23.6) 低千粒重Low TGW Hap-H (76.4) 高千粒重High TGW
TaGS5 AX-86167422 SNP芯片SNP array TaGS5-A1a (5.4) 低千粒重Low TGW TaGS5-A1b (94.6) 高千粒重High TGW
TaCKX-D1 AX-179477458 SNP芯片SNP array TaCKX-D1b (0) 低千粒重Low TGW TaCKX-D1a (100) 高千粒重High TGW
TGW6-4A AX-176638862 SNP芯片SNP array TaTGW6-a (100) 低千粒重Low TGW TaTGW6-b (0) 高千粒重High TGW
TaGASR AX-181481120 SNP芯片SNP array H1g (0) 低千粒重Low TGW H1c (100) 高千粒重High TGW
TaGW7 AX-110471140 SNP芯片SNP array TaTGW-7Aa (95.9) 高千粒重High TGW TaTGW-7Ab (4.1) 低千粒重Low TGW
TaSus1 AX-179477464 SNP芯片SNP array Hap-T (100) 高千粒重Higher TGW Hap-C (0) 低千粒重Lower TGW
TaGS-D1 AX-176640664 SNP芯片SNP array TaGS-D1a (95.9) 高千粒重High TGW TaGS-D1b (4.1) 低千粒重Low TGW
穗粒数
Grain number
TaMoc AX-176643151 SNP芯片SNP array HapH (5.4) 穗粒数多
High grain number
HapL (94.6) 穗粒数低
Low grain number
性状 Traits 基因 Gene 标记 Marker 来源 Source 基因型A Genotype A (%) 表型A Phenotype A 基因型B Genotype B (%) 表型B Phenotype B
抗穗发芽
Pre-harvest sprouting
TaSdr-A1 AX-176644572 SNP芯片SNP array TaSdr-A1a (100) 低穗发芽抗性Low PHS TaSdr-A1b (0) 高抗穗发芽High PHS
TaSdr-B1 AX-176639367 SNP芯片SNP array TaSdr-B1a (100) 低穗发芽率Low germination TaSdr-B1b (0) 高穗发芽率High germination
TaVp-1B AX-179477457 SNP芯片SNP array Vp1Ba,b (100) 穗发芽
PHS susceptible
Vp1B1c (0) 轻度抗穗发芽
Slightly PHS resistance
AX-179477456 SNP芯片SNP array Vp1Bb (0) 抗穗发芽PHS resistance Vp1Ba,c (100) 穗发芽PHS susceptible
TaPHS1 (-222) AX-176641372 SNP芯片SNP array RioBlanceo type (100) 低穗发芽抗性Low PHS NW97S186 type (0) 高抗穗发芽High PHS
TaPHS1 (+646) KASP标记KASP marker RioBlanceo type (59.5) 低穗发芽抗性Low PHS NW97S186 type (40.5) 高抗穗发芽High PHS
TaPHS1 (+666) KASP标记KASP marker RioBlanceo type (59.5) 低穗发芽抗性Low PHS NW97S186 type (40.5) 高抗穗发芽High PHS
籽粒硬度
Grain hardness
Pina-D1 AX-179477449 SNP芯片SNP array Pina-D1a (100) 软质Soft Pina-D1b (0) 硬质Hard
Pinb-D1 KASP标记KASP marker Pinb-D1a (64.9) 软质Soft Pinb-D1b (35.1) 硬质Hard
蛋白质含量
Grain protein content
Gpc-B1 AX-179477448 SNP芯片SNP array Gpc-B1 (100) 正常籽粒蛋白含量
Normal GPC
Gpc-B1 (0) 高籽粒蛋白含量
Increased GPC
高分子量谷蛋白亚基
HMW-GS
Glu-A1 AX-179477455 SNP芯片SNP array 2*, 1 (100) 强筋Strong gluten Null (0) 弱筋Weak gluten
AX-86170659 SNP芯片SNP array 2*, Null (28.4) 强筋Strong gluten 1 (71.6) 弱筋Weak gluten
Glu-B1 AX-176641422 SNP芯片SNP array Bx13 (0) 强筋Strong gluten Non Bx13 (100) 弱筋Weak gluten
Glu-D1 KASP标记KASP marker 2+12 or other (52.7) 弱筋Weak gluten 5+10 (47.3) 强筋Strong gluten
番茄红素合成酶
Phytoene synthase
Psy-A1 AX-179477462 SNP芯片SNP array Psy-A1b (100) 低黄色素含量Low YPC Psy-A1a (0) 高黄色素含量High YPC
Psy-B1 AX-86170621 SNP芯片SNP array Psy-B1c (0) 高黄色素含量High YPC Psy-B1a or Psy-B1b (100) 低黄色素含量Low YPC
Psy-D1 AX-95219842 SNP芯片SNP array Psy-D1g (0) 高黄色素含量High YPC Psy-D1a (100) 低黄色素含量Low YPC
番茄红素脱氢酶
Phytoene desaturase
Pds-B1 AX-176640790 SNP芯片SNP array TaPds-B1b (56.8) 低黄色素含量Low YPC TaPds-B1a (43.2) 高黄色素含量High YPC
多酚氧化酶
Polyphenol oxidase
PPO-A1 AX-86166813 SNP芯片SNP array Ppo-A1a (12.3) 高多酚氧化酶活性High PPO Ppo-A1b (87.7) 低多酚氧化酶活性Low PPO
PPO-D1 AX-176642150 SNP芯片SNP array Ppo-D1b (48.6) 高多酚氧化酶活性High PPO Ppo-D1a (51.4) 低多酚氧化酶活性Low PPO
脂氧合酶 Lipoxygenase Lox-B1 AX-176640873 SNP芯片SNP array Lox-B1b (100) 低脂氧合酶活性Low LOX Lox-B1a (0) 高脂氧合酶活性High LOX
秆锈病
Stem rust
Sr2 AX-176639455 SNP芯片SNP array Sr2- (100) 感病Susceptible Sr2 (Hope) (0) 抗病Resistant
Sr36 AX-176641832 SNP芯片SNP array Sr36- (100) 感病Susceptible Sr36+ (0) 抗病Resistant
叶锈病
Leaf rust
Lr34 AX-179477447 SNP芯片SNP array Tsn1+ (0) 不敏感Insensitive Tsn1- (100) 敏感Sensitive
Lr67 AX-176644084 SNP芯片SNP array Lr34- (100) 感病Susceptible Lr34+ (0) 抗病Resistant
褐斑病 Tan spot Tsn1 AX-181481160 SNP芯片SNP array Lr67+ (0) 抗病Resistant Lr67- (100) 感病Susceptible
赤霉病
Fusarium head blight
Fhb1 JAASM395 电泳标记
Electrophoresis marker
Fhb1+ (48.6) 抗病Resistant Fhb1- (51.4) 感病Susceptible
白粉病
Powdery mildew
Pm21 MBH1 电泳标记
Electrophoresis marker
Pm21+ (20.3) 抗病Resistant Pm21- (79.7) 感病Susceptible

Fig. 2

SNP distribution and the polymorphism information content on the chromosomes Darker gray is associated with higher PIC values, lighter gray with lower PIC values"

Fig. 3

Genetic similarity coefficients among the Ningmai varieties (lines) The released varieties are in the black box at top left; Darker gray is associated with higher PIC genetic similarity coefficients, lighter gray with lower genetic similarity coefficients"

Fig. 4

Neighbor Joining cluster analysis in the Ningmai varieties (lines) A: Released varieties; B: All the varieties (lines); NM3: Ningmai 3; NM6: Ningmai 6; NM7: Ningmai 7; NM8: Ningmai 8; NM9: Ningmai 9; NM10: Ningmai 10; NM11: Ningmai 11; NM12: Ningmai 12; NM13: Ningmai 13; NM14: Ningmai 14; NM15: Ningmai 15; NM16: Ningmai 16; NM17: Ningmai 17; NM18: Ningmai 18; NM19: Ningmai 19; NM20: Ningmai 20; NM21: Ningmai 21; NM22: Ningmai 22; NM23: Ningmai 23; NM24: Ningmai 24; NM26: Ningmai 26; NM27: Ningmai 27; NM28: Ningmai 28"

[1] 何中虎, 林作楫, 王龙俊, 肖志敏, 万富世, 庄巧生. 中国小麦品质区划的研究. 中国农业科学, 2002, 35(4):359-364.
HE Z H, LIN Z Y, WANG L J, XIAO Z M, WAN F S, ZHUANG Q S. Classification on Chinese wheat regions based on quality. Scientia Agricultura Sinica, 2002, 35(4):359-364. (in Chinese)
[2] 姜朋, 陈小霖, 张平平, 张鹏, 姚金保, 马鸿翔. 宁麦9号对其衍生品种的遗传贡献. 作物学报, 2014, 40(5):830-837.
doi: 10.3724/SP.J.1006.2014.00830
JIANG P, CHEN X L, ZHANG P P, ZHANG P, YAO J B, MA H X. Genetic contribution of wheat variety Ningmai 9 to its derivates. Acta Agronomica Sinica, 2014, 40(5):830-837. (in Chinese)
doi: 10.3724/SP.J.1006.2014.00830
[3] 姜朋, 张旭, 吴磊, 何漪, 张平平, 马鸿翔, 孔令让. 宁麦9号/扬麦158重组自交系群体产量性状的遗传解析. 作物学报, 2021, 47(5):869-881.
doi: 10.3724/SP.J.1006.2021.01051
JIANG P, ZHANG X, WU L, HE Y, ZHANG P P, MA H X, KONG L R. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158. Acta Agronomica Sinica, 2021, 47(5):869-881. (in Chinese)
doi: 10.3724/SP.J.1006.2021.01051
[4] 李春燕, 封超年, 张影, 郭文善, 朱新开, 彭永欣. 氮肥基追比对弱筋小麦宁麦9号籽粒淀粉合成及相关酶活性的影响. 中国农业科学, 2005, 38(6):1120-1125.
LI C Y, FENG C N, ZHANG Y, GUO W S, ZHU X K, PENG Y X. Effects of the ratio between basal N and top dressing N on grain starch formation in weak gluten wheat variety Ningmai 9 and its enzymes activities. Scientia Agricultura Sinica, 2005, 38(6):1120-1125. (in Chinese)
[5] 杭雅文, 武威, 张莀茜, 范婷, 李春燕, 周桂生, 丁锦峰, 朱敏, 郭文善, 朱新开. 弱筋小麦品质指标的相关性分析及筛选. 麦类作物学报. 2020, 40(3):320-327.
HANG Y W, WU W, ZHANG C X, FAN T, LI C Y, ZHOU G S, DING J F, ZHU M, GUO W S, ZHU X K. Correlation analysis and screening of quality indices for weak-gluten wheat. Journal of Triticeae Crops, 2020, 40(3):320-327. (in Chinese)
[6] 朱新开, 郭文善, 周君良, 胡宏, 张影, 李春燕, 封超年, 彭永欣. 氮素对不同类型专用小麦营养和加工品质调控效应. 中国农业科学, 2003, 36(6):640-645.
ZHU X K, GUO W S, ZHOU J L, HU H, ZHANG Y, LI C Y, FENG C N, PENG Y X. Effects of nitrogen on grain yield, nutritional quality and processing quality of wheat for different end uses. Scientia Agricultura Sinica, 2003, 36(6):640-645. (in Chinese)
[7] 张晓, 张伯桥, 江伟, 吕国锋, 张晓祥, 李曼, 高德荣. 扬麦系列品种品质性状相关基因的分子检测. 中国农业科学, 2015, 48(19):3779-3793.
ZHANG X, ZHANG B Q, JIANG W, LÜ G F, ZHANG X X, LI M, GAO D R. Molecular detection for quality traits-related genes in Yangmai series wheat cultivars. Scientia Agricultura Sinica, 2015, 48(19):3779-3793. (in Chinese)
[8] 王君婵, 吴旭江, 胡文静, 张晓, 张勇, 高德荣, 别同德, 张伯桥. 扬麦系列品种(系)重要性状功能基因的KASP检测. 江苏农业学报, 2019, 35(6):1271-1283.
WANG J C, WU X J, HU W J, ZHANG X, ZHANG Y, GAO D R, BIE T D, ZHANG B Q. Kompetitive allele specific PCR (KASP) assays for functional genes of important trait in Yangmai series wheat cultivars (lines). Jiangsu Journal of Agricultural Sciences, 2019, 35(6):1271-1283. (in Chinese)
[9] 殷贵鸿, 韩玉林, 黄峰, 唐建卫, 王丽娜, 高艳, 于海飞, 李楠楠, 张倩, 邹少奎, 杨光宇, 李新平. 河南省周口小麦遗传育种现状及发展趋势. 河南农业科学. 2015, 44(4):36-41.
YIN G H, HAN Y L, HUANG F, TANG J W, WANG L N, GAO Y, YU H F, LI N N, ZHANG Q, ZOU S K, YANG G Y, LI X P. Breeding progress and developing trend of Zhoukou wheat in Henan province. Journal of Henan Agricultural Sciences, 2015, 44(4):36-41. (in Chinese)
[10] 张平平, 姚金保, 王化敦, 宋桂成, 姜朋, 张鹏, 马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系. 作物学报, 2020, 46(4):491-502.
doi: 10.3724/SP.J.1006.2020.91050
ZHANG P P, YAO J B, WANG H D, SONG G C, JIANG P, ZHANG P, MA H X. Soft wheat quality traits in Jiangsu province and their relationship with cookie making quality. Acta Agronomica Sinica, 2020, 46(4):491-502. (in Chinese)
doi: 10.3724/SP.J.1006.2020.91050
[11] 张平平, 马鸿翔, 姚金保, 周淼平, 杨学明, 张鹏, 杨丹. 江苏省小麦品种的谷蛋白亚基组成分析. 江苏农业学报, 2014, 30(5):959-965.
ZHANG P P, MA H X, YAO J B, ZHOU M P, YANG X M, ZHANG P, YANG D. Subunit composition of glutenin in common wheat of Jiangsu province. Jiangsu Journal of Agricultural Sciences, 2014, 30(5):959-965. (in Chinese)
[12] 姜朋, 张平平, 张旭, 陈小霖, 姚金保, 马鸿翔. 弱筋小麦宁麦9号及其衍生系的蛋白质含量遗传多样性及关联分析. 作物学报, 2015, 41(12):1828-1835.
doi: 10.3724/SP.J.1006.2015.01828
JIANG P, ZHANG P P, ZHANG X, CHEN X L, YAO J B, MA H X. Genetic diversity and association analysis of protein content in weak gluten wheat Ningmai 9 and its derived lines. Acta Agronomica Sinica, 2015, 41(12):1828-1835. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01828
[13] 姜朋, 张平平, 张旭, 陈小霖, 马鸿翔. 宁麦9号及其衍生品种(系)揉混特性的关联分析. 作物学报, 2016, 42(8):1168-1175.
doi: 10.3724/SP.J.1006.2016.01168
JIANG P, ZHANG P P, ZHANG X, CHEN X L, MA H X. Association analysis for mixograph properties in Ningmai 9 and its derivatives. Acta Agronomica Sinica, 2016, 42(8):1168-1175. (in Chinese)
doi: 10.3724/SP.J.1006.2016.01168
[14] JIANG P, ZHANG X, WU L, HE Y, ZHUANG W, CHENG X, GE W, MA H, KONG L. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathology, 2020, 69(2):249-258.
doi: 10.1111/ppa.v69.2
[15] 张旭, 姜朋, 叶人元, 吴磊, 张瑜, 马鸿翔. 宁麦9号及其衍生品种的赤霉病抗性分析及抗性溯源. 分子植物育种, 2017, 15(3):1053-1060.
ZHANG X, JIANG P, YE R Y, WU L, ZHANG Y, MA H X. Evaluation and source tracing of resistance to Fusarium head blight in wheat variety Ningmai 9 and its derivatives. Molecular Plant Breeding, 2017, 15(3):1053-1060. (in Chinese)
[16] CAVANAGH C R, SHIAOMAN C, SHICHEN W, BEVAN EMMA H, STUART S, SEIFOLLAH K, KERRIE F, CYRILLE S, BROWN- GUEDIRA GL, ALINA A. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of the Sciences of the United States of America, 2013, 110(20):8057-8062.
[17] CUI F, ZHANG N, FAN X, ZHANG W, ZHAO C, YANG L, PAN R, CHEN M, HAN J, ZHAO X. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Scientific Reports, 2017, 7(1):3788.
doi: 10.1038/s41598-017-04028-6
[18] WANG S, WONG D, FORREST K, ALLEN A, CHAO S, HUANG B, MACCAFERRI M, SALVI S, MILNER S, CATTIVELLI L. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnology Journal, 2014, 12(6):787-796.
doi: 10.1111/pbi.2014.12.issue-6
[19] XU F, CHEN S, ZHOU S, CHEN X, WANG J, ZHANG Z, HUANG Y, SONG M, HAN S, ZHAN K, HE D. Genome-wide association study on root traits under different cultivation patterns in wheat. Frontiers in Genetics, 2021, 12:646712.
doi: 10.3389/fgene.2021.646712
[20] 郑建敏, 罗江陶, 万洪深, 李式昭, 杨漫宇, 李俊, 刘于斌, 蒲宗君. 利用小麦660K SNP芯片分析川麦44在其衍生后代中的遗传贡献. 麦类作物学报, 2019, 39(11):33-40.
ZHENG J M, LUO J T, WAN H S, LI S Z, YANG M Y, LI J, LIU Y B, PU Z J. Genetic contribution of Chuanmai 44 to its derivatives analyzed by a wheat 660K SNP array. Journal of Triticeae Crops, 2019, 39(11):33-40. (in Chinese)
[21] 郭利磊, 张笑晴. 我国农作物品种区试审定制度的改革与发展. 中国种业, 2019(2):12-15.
GUO L L, ZHANG X Q. Reform and development of variety approval and registration system for crops in China. China Seed Industry, 2019(2):12-15. (in Chinese)
[22] POREBSKI S, BAILEY L, BAUM B. Modification of CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 1997, 15:8-15.
doi: 10.1007/BF02772108
[23] RASHEED A, WEN W, GAO F, ZHAI S, JIN H, LIU J, GUO Q, ZHANG Y, DREISIGACKER S, XIA X. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 2016, 129(10):1-18.
doi: 10.1007/s00122-015-2595-9
[24] 吴磊, 张旭, 姜朋, 何漪, 李畅, 马鸿翔. 一对用于检测小麦赤霉病抗性的引物及其应用: 中国, ZL201811515195.8, 2019-03-01.
WU L, ZHANG X, JIANG P, HE Y, LI C, MA H X. A pair of primers for detection of wheat scab resistance and its application: China, ZL201811515195.8, 2019-03-01. (in Chinese)
[25] BIE T, ZHAO R, ZHU S, CHEN S, CEN B, ZHANG B, GAO D, JIANG Z, CHEN T, WANG L, WU R, HE H. Development and characterization of marker MBH1 simultaneously tagging genes Pm21 and PmV conferring resistance to powdery mildew in wheat. Molecular Breeding, 2015, 35:189.
doi: 10.1007/s11032-015-0385-3
[26] BOTSTEIN D, WHITE RL, SKOLNICK MH, DAVIS R. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980, 32:314-331.
[27] TAMURA K, STECHER G, PETERSON D, FILIPSKI A, KUMAR S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 2013, 30(12):2725-2729.
doi: 10.1093/molbev/mst197
[28] 郭瑞, 黄晓高, 温明星, 陈琛, 柳聚阁, 单延博, 曲朝喜, 李东升. 追氮量和种植密度对春性强筋小麦镇麦12号籽粒产量和品质的影响. 核农学报, 2020, 34(8):1834-1839.
GUO R, HUANG X G, WEN M X, CHEN C, LIU J G, SHAN Y B, QU C X, LI D S. Effect of the nitrogen topdressing and plant density on grain yield and quality of spring strong gluten wheat cultivar Zhenmai 12. Journal of Nuclear Agricultural Sciences, 2020, 34(8):1834-1839. (in Chinese)
[29] 马文峰. 中国专用小麦粉消费状况与企业发展策略建议. 粮食加工, 2020, 45(4):5-8.
MA W F. Consumption situation of appropriative flour and strategy suggestions for enterprise development in China. Grain Processing, 2020, 45(4):5-8. (in Chinese)
[30] 赵中华, 王强, 朱晓明. 2015年全国小麦病虫害发生新特点与防治新思路. 中国植保导刊, 2016, 36(8):33-36.
ZHAO Z H, WANG Q, ZHU X M. New occurrence characteristics and methods of prevention and control for wheat pests and diseases of China in 2015. China Plant Protection, 2016, 36(8):33-36. (in Chinese)
[31] HAO C, WANG L, ZHANG X, YOU G, DONG Y, JIA J, LIU X, SHANG X, LIU S, CAO Y. Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers. Science in China. Chinese Academy of Sciences Series C, Life sciences, 2006, 49:218-226.
[32] 张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析: 发掘重要基因的新思路. 中国农业科学, 2006, 39(8):1526-1535.
ZHANG X Y, TONG Y P, YOU G X, HAO C Y, GAI H M, WANG L F, LI B, DONG Y C, LI Z S. Hitchhiking effect mapping: A new approach for discovering agronomic important genes. Scientia Agricultura Sinica, 2006, 39(8):1526-1535. (in Chinese)
[33] 李海凤, 刘慧萍, 戴毅, 黄帅, 张军, 高勇, 陈建民. 四倍体小麦背景中长穗偃麦草E染色体传递特征. 遗传. 2016, 38(11):1019-1028.
LI H F, LIU H P, DAI Y, HAUNG S, ZHANG J, GAO Y, CHEN J M. Transmitting characters of individual E chromosomes of Thinopyrum elongatum in Triticum turgidum background. Hereditas, 2016, 38(11):1019-1028. (in Chinese)
[34] 刘易科, 朱展望, 陈泠, 邹娟, 佟汉文, 朱光, 何伟杰, 张宇庆, 高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性. 作物学报, 2020, 46(2):307-314.
doi: 10.3724/SP.J.1006.2020.91039
LIU Y K, ZHU Z W, CHEN L, ZOU J, TONG H W, ZHU G, HE W J, ZHANG Y Q, GAO C B. Revealing the genetic diversity of wheat varieties (lines) in China based on SNP markers. Acta Agronomica Sinica, 2020, 46(2):307-314. (in Chinese)
doi: 10.3724/SP.J.1006.2020.91039
[35] MA D, YAN J, HE Z, WU L, XIA X. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Molecular Breeding, 2012, 29(1):43-52.
doi: 10.1007/s11032-010-9524-z
[36] HU M J, ZHANG H P, CAO J J, ZHU X F, WANG S X, JIANG H, WU Z Y, LU J, CHANG C, SUN G L, MA C X. Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Molecular Breeding, 2016, 36(3):25.
doi: 10.1007/s11032-016-0449-z
[37] 范家霖, 陈晓杰, 张建伟, 程仲杰, 王嘉欢, 张福彦, 杨保安. 高分子量麦谷蛋白亚基组成及其与小麦品质性状的关系分析. 麦类作物学报, 2021, 41(5):544-552.
FAN J L, CHEN X J, ZHANG J W, CHENG Z J, WANG J H, ZHANG F Y, YANG B A. Composition of high molecular weight glutenin subunits and relationship with wheat quality traits. Journal of Triticeae Crops, 2021, 41(5):544-552. (in Chinese)
[38] HE Z H, YANG J, ZHANG Y, QUAIL K, PENA R J. Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica, 2004, 139(3):257-267.
doi: 10.1007/s10681-004-3283-z
[39] 翟胜男, 刘爱峰, 李法计, 刘成, 郭军, 韩冉, 訾妍, 汪晓璐, 吕莹莹, 刘建军. 小麦籽粒黄色素含量检测方法的改良与应用. 中国农业科学, 2021, 54(2):239-247.
ZHAI S N, LIU A F, LI F J, LIU C, GUO J, HAN R, CI Y, WANG X L, LÜ Y Y, LIU J J. Improvement and application of the method for determining yellow pigment content in wheat grain. Scientia Agricultura Sinica, 2021, 54(2):239-247. (in Chinese)
[40] 张玉薇, 刘博, 刘太国, 高利, 陈万权. 小麦品种抗条锈病基因Yr10Yr18及1BL/1RS易位的分子检测. 植物保护, 2014, 40(1):54-59.
ZHANG Y W, LIU B, LIU T G, GAO L, CHEN W Q. Molecular detection of Yrl0 and Yrl8 genes and 1BL/1RS translocation in wheat cultivars. Plant Protection, 2014, 40(1):54-59. (in Chinese)
[41] 张帅, 朱浩, 李春莲, 韩德俊, 陈耀锋. 小麦品种(系)条锈病成株期抗性检测及抗病基因分析. 分子植物育种, 2021, https://kns.cnki.net/kcms/detail/46.1068.S.20210303.1000.006.html .
ZHANG S, ZHU H, LI C L, HAN D J, CHEN Y F. Detection and analysis of stripe rust resistance genes in adult period in wheat lines. Molecular Plant Breeding, 2021, https://kns.cnki.net/kcms/detail/46.1068.S.20210303.1000.006.html . (in Chinese)
[42] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018, 44(4):505-511.
doi: 10.3724/SP.J.1006.2018.00505
ZHANG H J, SU Z Q, BAI G H, ZHANG X, MA H X, LI T, DENG Y, MAI C Y, YU L Q, LIU H W, YANG L, LI H J, ZHOU Y. Improvement of resistance of wheat cultivars to Fusarium head blight in the Yellow-Huai Rivers Valley winter wheat zone with functional marker selection of Fhb1 gene. Acta Agronomica Sinica, 2018, 44(4):505-511. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00505
[43] 朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎. 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源. 作物学报, 2018, 44(4):473-482.
doi: 10.3724/SP.J.1006.2018.00473
ZHU Z W, XU D A, CHENG S H, GAO C B, XIA X C, HAO Y F, HE Z H. Characterization of Fusarium head blight resistance gene Fhb1 and its putative ancestor in Chinese wheat germplasm. Acta Agronomica Sinica, 2018, 44(4):473-482. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00473
[44] 蒋正宁, 吕国锋, 王玲, 陈甜甜, 江伟, 李东升, 高德荣, 张勇. 扬麦品种(系)赤霉病抗扩展性基因分子检测及其抗性评价. 麦类作物学报. 2019, 39(12):1406-1415.
JIANG Z N, LÜ G F, WANG L, CHEN T T, JAING W, LI D S, GAO D R, ZHANG Y. Evaluation of Fusarium head blight resistance and molecular detection of typeⅡresistance genes in Yangmai wheat cultivars (lines). Journal of Triticeae Crops, 2019, 39(12):1406-1415. (in Chinese)
[45] 徐飞, 王俊美, 杨共强, 宋玉立, 刘露露, 李丽娟, 李亚红, 韩自行, 张姣姣. 黄淮冬麦区小麦主栽品种赤霉病综合抗性鉴定及其Fhb1抗性基因检测. 植物保护, 2020, 46(5):84-92.
XU F, WANG J M, YANG G Q, SONG Y L, LIU L L, LI L J, LI Y H, HAN Z X, ZHANG J J. Evaluation of the comprehensive resistance to Fusarium head blight and detection of the resistance gene Fhb1 in main wheat cultivars in the Huanghuai winter wheat region. Plant Protection, 2020, 46(5):84-92. (in Chinese)
[46] 张煜, 李正玲, 王震, 张彬, 王会伟, 李金秀, 李金榜, 胡琳, 常东伟. 黄淮南部麦区小麦赤霉病抗性鉴定及基因型分析. 麦类作物学报, 2020, 40(3):270-277.
ZHANG Y, LI Z L, WANG Z, ZHANG B, WANG H W, LI J X, LI J B, HU L, CHANG D W. Identification of the resistance to Fusarium head blight of wheat in the south of Huang-Huai wheat zone and genotype analysis of resistant cultivars. Journal of Triticeae Crops, 2020, 40(3):270-277. (in Chinese)
[47] 唐玮, 张开朗, 徐东祥, 潘勇, 马勇, 张如标. 江苏里下河麦区小麦白粉病的流行成因与防控对策. 安徽农学通报, 2016, 22(17):87-91.
TANG W, ZHANG K L, XU D X, PAN Y, MA Y, ZHANG R B. Occurrence causes and control countermeasure of wheat powdery mildew in Lixiahe region, Jiangsu province. Anhui Agricultural Science Bulletin, 2016, 22(17):87-91. (in Chinese)
[48] JIANG P, ZHANG P, WU L, HE Y, LI C, MA H, ZHANG X. Linkage and association mapping and Kompetitive allele-specific PCR marker development for improving grain protein content in wheat. Theoretical and Applied Genetics, 2021, 134(11):3563-3575.
doi: 10.1007/s00122-021-03913-z
[49] SU Z, JIN S, ZHANG D, BAI G. Development and validation of diagnostic markers for Fhb1 region, a major QTL for Fusarium head blight resistance in wheat. Theoretical and Applied Genetics, 2018, 131(11):2371-2380.
doi: 10.1007/s00122-018-3159-6
[50] 姜朋, 张旭, 何漪, 吴磊, 李畅. 同时检测小麦抗赤霉病基因与抗白粉病基因的多重PCR标记引物组及其应用: 中国, 202110517544.5, 2021-06-28.
JIANG P, ZHANG X, HE Y, WU L, LI C. Multiplex PCR-based marker primers for simultaneous detection of genes on Fusarium Head Blight and powdery mildew and its application: China, 202110517544.5, 2021-06-28. (in Chinese)
[1] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[2] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[3] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[4] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[5] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[6] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[7] ZHANG Xingping,QIAN Qian,ZHANG JiaNan,DENG XingWang,WAN JianMin,XU Yunbi. Transforming and Upgrading Off-Season Breeding in Hainan Through Molecular Plant Breeding [J]. Scientia Agricultura Sinica, 2021, 54(18): 3789-3804.
[8] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[9] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[10] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[11] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[12] Xiao ZHANG,Man LI,DaTong LIU,Wei JIANG,Yong ZHANG,DeRong GAO. Analysis of Quality Traits and Breeding Inspiration in Yangmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2020, 53(7): 1309-1321.
[13] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[14] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[15] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,ZHANG CaiXia,LI LianWen,PIAO JiCheng. Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation [J]. Scientia Agricultura Sinica, 2020, 53(3): 600-611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!