Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (16): 3417-3427.doi: 10.3864/j.issn.0578-1752.2021.16.005
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
FEI ShuaiPeng1,2(),YU XiaoLong2,LAN Ming2,LI Lei2,XIA XianChun2,HE ZhongHu2,3,XIAO YongGui2()
[1] |
HERNANDEZ J, LOBOS G A, MATUS I, DEL POZO A, SILVA P, GALLEGUILLOS M. Using ridge regression models to estimate grain yield from field spectral data in bread wheat (Triticum aestivum L. ) grown under three water regimes. Remote Sensing, 2015, 7(2):2109-2126.
doi: 10.3390/rs70202109 |
[2] |
MONTESINOS-LÓPEZ O A, MONTESINOS-LÓPEZ A, CROSSA J, DELOS G, CAMPOS , ALVARADO G, SUCHISMITA M, RUTKOSKI J, GONZÁLEZ-PÉREZ L, BURGUEÑO J. Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data. Plant Methods, 2017, 13:4.
doi: 10.1186/s13007-016-0154-2 |
[3] |
HASSAN M A, YANG M, RASHEED A, YANG G, REYNOLDS M, XIA X, XIAO Y, HE Z. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Science, 2019, 282:95-103.
doi: 10.1016/j.plantsci.2018.10.022 |
[4] |
HASSAN M A, YANG M, RASHEED A, JIN X, XIA X, XIAO Y, HE Z. Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat. Remote Sensing, 2018, 10(6):809.
doi: 10.3390/rs10060809 |
[5] |
GITELSON A A, PENG Y, ARKEBAUER T J, SCHEPERS J. Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: Implications for remote sensing of primary production. Remote Sensing of Environment, 2014, 144:65-72.
doi: 10.1016/j.rse.2014.01.004 |
[6] | BOLTON D K, FRIEDL M A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural & Forest Meteorology, 2013, 173:74-84. |
[7] | 李岚涛, 李静, 明金, 汪善勤, 任涛, 鲁剑巍. 冬油菜叶面积指数高光谱监测最佳波宽与有效波段研究. 农业机械学报, 2018, 49(2):156-165. |
LI L T, LI J, MING J, WANG S Q, REN T, LU J W. Selection optimization of hyperspectral bandwidth and effective wavelength for predicting leaf areaindex in winter oilseed rape. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2):156-165. (in Chinese) | |
[8] |
SHAH S H, ANGEL Y, HOUBORG R, ALI S, MCCABE M F. A random forest machine learning approach for the retrieval of leaf chlorophyll content in wheat. Remote Sensing, 2019, 11:920.
doi: 10.3390/rs11080920 |
[9] |
BREIMANL. Random forests. Machine Learning, 2001, 45:5-32.
doi: 10.1023/A:1010933404324 |
[10] | SAIN, STEPHAN R. The nature of statistical learning theory. Technometrics, 1996, 38:409. |
[11] |
BRADLEY J B. Neural networks: A comprehensive foundation. Information Processing & Management, 1995, 31:786.
doi: 10.1016/0306-4573(95)90003-9 |
[12] |
WANG L, ZHOU X, ZHU X, DONG Z, GUO W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal, 2016, 4:212-219.
doi: 10.1016/j.cj.2016.01.008 |
[13] |
YUAN H, YANG G, LI C, WANG Y, LIU J, YU H, FENG H, XU B, ZHAO X, YANG X. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models. Remote Sensing, 2017, 9:309.
doi: 10.3390/rs9040309 |
[14] |
JIN X, XU X, SONG X, LI Z, WANG J, GUO W. Estimation of leaf water content in winter wheat using grey relational analysis-partial least squares modeling with hyperspectral data. Agronomy Journal, 2013, 105:1385-1392.
doi: 10.2134/agronj2013.0088 |
[15] |
FENG L, ZHANG Z, MA Y, DU Q, WILLIAMS P, DREWRY J, LUCK B. Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning. Remote Sensing, 2020, 12(12):2028.
doi: 10.3390/rs12122028 |
[16] |
WOLPERT D H. Stacked generalization. Neural Networks, 1992, 5:241-259.
doi: 10.1016/S0893-6080(05)80023-1 |
[17] |
TING K M, WITTEN I H. Issues in stacked generalization. Journal of Artificial Intelligence Research, 1999, 10:271-289.
doi: 10.1613/jair.594 |
[18] | FU P, MEACHAM-HENSOLD K, GUAN K, BERNACCHI C J. Hyperspectral leaf reflectance as proxy for photosynthetic capacities: An ensemble approach based on multiple machine learning algorithms. Frontiers in Plant Science, 2019, 10. |
[19] |
HEALEY S P, COHEN W B, YANG Z, KENNETH BREWER C, BROOKS E B, GORELICK N, HERNANDEZ A J, HUANG C, JOSEPH HUGHES M, KENNEDY R E, LOVELAND T R, MOISEN G G, SCHROEDER T A, STEHMAN S V, VOGELMANN J E, WOODCOCK C E, YANG L, ZHU Z. Mapping forest change using stacked generalization: An ensemble approach. Remote Sensing of Environment, 2018, 204:717-728.
doi: 10.1016/j.rse.2017.09.029 |
[20] | WILLIAMSCK, RASMUSSENCE. Gaussian processes for machine learning. Cambridge, CA: MIT Press, 2006. |
[21] |
MCDONALD G C. Ridge regression. Wiley Interdisciplinary Reviews Computational Statistics, 2009, 1:93-100.
doi: 10.1002/wics.v1:1 |
[22] |
LIANG L, DI L P, ZHANG L P, DENG M X, QIN Z H, ZHAO S H, LIN H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sensing of Environment, 2015, 165:123-134.
doi: 10.1016/j.rse.2015.04.032 |
[23] |
SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 81(2/3):337-354.
doi: 10.1016/S0034-4257(02)00010-X |
[24] |
DAUGHTRY C S T, WALTHALL C L, KIM M S, DE COLSTOUN E B, MCMURTREY J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 2000, 74:229-239.
doi: 10.1016/S0034-4257(00)00113-9 |
[25] |
RODRIGUEZ D, FITZGERALD G J, BELFORD R, CHRISTENSEN L K. Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-physiological concepts. Australian Journal of Agricultural Research, 2006, 57:781-789.
doi: 10.1071/AR05361 |
[26] |
GITELSON A A, KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 1996, 58:289-298.
doi: 10.1016/S0034-4257(96)00072-7 |
[27] | GITELSON A A, VINA A, CIGANDA V, RUNDQUIST D C, ARKEBAUER T J. Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 2005, 32:1-4. |
[28] |
HABOUDANE D, MILLER J R, PATTEY E, ZARCO-TEJADA P J, STRACHAN I B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 2004, 90:337-352.
doi: 10.1016/j.rse.2003.12.013 |
[29] |
DASH J, CURRAN P J. Evaluation of the meris terrestrial chlorophyll index (MTCI). Advances in Space Research, 2007, 39:100-104.
doi: 10.1016/j.asr.2006.02.034 |
[30] |
SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 81:337-354.
doi: 10.1016/S0034-4257(02)00010-X |
[31] |
ROUJEAN J L, BREON F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 1995, 51:375-384.
doi: 10.1016/0034-4257(94)00114-3 |
[32] |
PENUELAS J, FILELLA I, BIEL C S, SERRANO L, SAVE R. The Reflectance at the 950-970 Nm region as an indicator of plant water status. International Journal of Remote Sensing, 1993, 14(10):1887-1905.
doi: 10.1080/01431169308954010 |
[33] |
GUPTA R K, VIJAYAN D, PRASAD T S. New hyperspectral vegetation characterization parameters. Advances in Space Research, 2001, 28(1):201-206.
doi: 10.1016/S0273-1177(01)00346-5 |
[34] | VOGELMANN J, ROCK B, MOSS D. Red edge spectral measurements from sugar maple leaves. Remote Sensing. 1993, 14:1563-1575. |
[35] |
KAUFMAN Y J, TANRE D. Atmospherically resistant vegetation index (ARVI) for eos-modis. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30:261-270.
doi: 10.1109/36.134076 |
[36] |
WANG L, HUNT E R, JR, QU J J, HAO X, DAUGHTRY C S T. Towards estimation of canopy foliar biomass with spectral reflectance measurements. Remote Sensing of Environment, 2011, 115(3):836-840.
doi: 10.1016/j.rse.2010.11.011 |
[37] | 周志华. 机器学习.第一版. 北京: 清华大学出版社, 2016: 181-182. |
ZHOU Z H. Machine Learning.1st edition. Beijing: Tsinghua University Press, 2016: 181-182. (in Chinese) | |
[38] | 邓威, 郭钇秀, 李勇, 朱亮, 刘定国. 基于特征选择和Stacking集成学习的配电网网损估测. 电力系统保护与控制, 2020, 48:108-115. |
DENG W, GUO Y X, LI Y, ZHU L, LIU D G. Power losses prediction based on feature selection and Stacking integrated learning. Power System Protection and Control, 2020, 48:108-115. (in Chinese) | |
[39] |
JULIANE B, ANDREAS B, SIMON B, JANIS B, SILAS E, GEORG B. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-Based RGB imaging. Remote Sensing, 2014, 6(11):10395-10412.
doi: 10.3390/rs61110395 |
[40] |
ZOU X C, MOTTUS M. Sensitivity of common vegetation indices to the canopy structure of field crops. Remote Sensing, 2017, 9:994.
doi: 10.3390/rs9100994 |
[41] |
FENG L, LI Y, WANG Y, DU Q. Estimating hourly and continuous ground-level PM2.5 concentrations using an ensemble learning algorithm: The ST-Stacking model. Atmospheric Environment, 2020, 223:117242.
doi: 10.1016/j.atmosenv.2019.117242 |
[42] |
FRAME J, MERRILEES D W. The effect of tractor wheel passes on herbage production from diploid and tetraploid ryegrass swards. Grass and Forage Science, 1996, 51:13-20.
doi: 10.1111/gfs.1996.51.issue-1 |
[43] | VAN D L, M J, POLLEY E C, HUBBARDAE. Super learner. Statistical Applications in Genetics & Molecular Biology, 2007, 6(1):25. |
[44] | 陈智芳, 宋妮, 王景雷, 孙景生. 基于高光谱遥感的冬小麦叶水势估测模型. 中国农业科学, 2017, 50(5):871-880. |
CHEN Z F, SONG N, WANG J L, SUN J S. Leaf water potential estimating models of winter wheat based on hyperspectral remote sensing. Scientia Agricultura Sinica, 2017, 50(5):871-880. (in Chinese) |
[1] | WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810. |
[2] | GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545. |
[3] | WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318. |
[4] | CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126. |
[5] | TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138. |
[6] | FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906. |
[7] | YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613. |
[8] | LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737. |
[9] | WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790. |
[10] | RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320. |
[11] | HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122. |
[12] | MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169. |
[13] | GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725. |
[14] | MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551. |
[15] | LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122. |
|