Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (16): 3428-3439.doi: 10.3864/j.issn.0578-1752.2021.16.006

• PLANT PROTECTION • Previous Articles     Next Articles

Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum

ZHAO JingYa(),XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin()   

  1. College of Plant Protection, Henan Agricultural University/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002
  • Received:2020-11-26 Accepted:2021-01-08 Online:2021-08-16 Published:2021-08-24
  • Contact: LinLin CHEN E-mail:zhaojy0108@163.com;llchensky@163.com

Abstract:

【Objective】Fusarium crown rot (FCR) caused by Fusarium pseudograminearum seriously affects wheat production in China. The objective of this study is to find and analyze the functions of APSES transcription factors in F. pseudograminearum, and to provide theoretical basis for revealing the pathogenic mechanism of F. pseudograminearum and prevention and treatment of FCR.【Method】The known APSES proteins were obtained from GenBank, and APSES candidates in F. pseudograminearum were found by BLASTP. Domains of FpAPSES proteins were determined using Pfam. The phylogenetic tree of APSES proteins was constructed using MEGA 5.05. The relative expression levels of FpAPSES1 and FpAPSES4 during infection were examined by quantitative RT-PCR (qRT-PCR). FpAPSES1 and FpAPSES4 deletion mutants were generated by polyethylene glycol (PEG)-mediated protoplast fungal transformation, and screened by PCR. The wild type, Δfpapses1 and Δfpapses4 strains were activated on PDA medium, and cultured on PDA for mycelial growth and morphology assays; mycelial blocks were introduced into liquid CMC medium to assess conidiation and conidia morphology; conidia were cultured in sterile distilled water to explore conidia germination; mycelial blocks or conidia suspension were prepared and inoculated wheat coleoptiles and barely leaves to explore pathogenicity. The pot-culture experiment was also used for virulence assay. ELISA was used to detect deoxynivalenol (DON) in inoculation millet. 【Result】 Four APSES candidates were found in F. pseudograminearum, which all contained the conserved DNA binding domain HTH. The phylogenetic tree analysis showed that FpAPSES1, FpAPSES2 and FpAPSES4 were divided into A group, while FpAPSES3 belonged to the C group. The qRT-PCR analysis revealed that FpAPSES1 and FpAPSES4 were up-regulated at infection stages, which suggested that FpAPSES1 and FpAPSES4 might play important roles in infection. Two FpAPSES1 deletion mutants (Δfpapses1-T10 and Δfpapses1-T27) and two FpAPSES4 deletion mutants (Δfpapses4-T1 and Δfpapses4-T2) were obtained. Compared with the wild type strain, both FpAPSES1- and FpAPSES4-deleted mutants exhibited significantly reduced colony growth rates. FpAPSES1-deleted mutants had normal hyphal branches, while FpAPSES4-deleted mutants exhibited curved and more branched hypha. Both FpAPSES1- and FpAPSES4-deleted mutants exhibited significantly reduced conidiation in CMC, and the conidia numbers were respectively reduced by 99.5% and 97.4% comparing with that of the wild type. Furthermore, conidia of FpAPSES1- and FpAPSES4-deleted mutants were shorter, less septa and lower germination rates. The wheat coleoptiles were point-inoculated with mycelial blocks or conidia, and the virulence of FpAPSES1- and FpAPSES4-deleted mutants was significantly reduced comparing to the wild type. Reduced pathogenicity was further observed by barely leaves inoculation and pot culture experiment. The DON levels in millet upon infection with FpAPSES1- and FpAPSES4-deleted mutants were reduced by 78% and 44% comparing to the wild type, respectively.【Conclusion】Both A group APSES homologs FpAPSES1 and FpAPSES4 play important roles in growth, conidiation and pathogenicity of F. pseudograminearum.

Key words: Fusarium crown rot, Fusarium pseudograminearum, APSES transcription factor, pathogenicity

Table 1

Primers used in the study"

引物Primer 引物序列Primer sequence (5′-3′)
FpAPSES1-F1 GTGGGTCTCATGATGATTC
FpAPSES4-F1 GAGTCTTCAACCCCTCTC
FpAPSES1-R1 CAATATCATCTTCTGTCGACGTTGAAAGATTGTTGAGATG
FpAPSES4-R1 CAATATCATCTTCTGTCGACGTTGGCGACTAAGATGAAGC
FpAPSES1-F2 ATAGAGTAGATGCCGACCGCGGGTTCTACCGGCACTCACCTCTC
FpAPSES4-F2 ATAGAGTAGATGCCGACCGCGGGTTCTTAACATCATTGGCCTATC
FpAPSES1-R2 CATACAAACATGCTGCCTCTC
FpAPSES4-R2 CAATTGTCCGGTGCTGTC
YG-F GATGTAGGAGGGCGTGGATATGTCCT
HY-R GTATTGACCGATTCCTTGCGGTCCGAA
HYG-F GTCGACAGAAGATGATATTG
HYG-R GAACCCGCGGTCGGCATCTACTCTAT
FpAPSES1-F3 CATTAGGCTCTTCGGGTGTG
FpAPSES4-F3 CACACCAACCCAATCCCTC
FpAPSES1-R3 CATACGAGACTCTACAACAG
FpAPSES4-R3 GTTCTGGTTGCTGGTCCTG
FpAPSES1-G1 CAACGACTCATGGCTCAATG
FpAPSES4-G1 CATGCATATTCAGAACCCAG
FpAPSES1-G2 GTAAGGGAGAGGTTCAAGAG
FpAPSES4-G2 GTGCTGTGTGATCCTCTG
H1R GCTGATCTGACCAGTTGC
H1F GTCGATGCGACGCAATCGT
H2F TTCCTCCCTTTATTTCAGATTCAA
H2R ATGTTGGCGACCTCGTATTGG
TEF1a-RTF TCACCACTGAAGTCAAGTCC
TEF1a-RTR ACCAGCGACGTTACCACGTC
FpAPSES1-RTF AACGTGGATATGTATGCGGC
FpAPSES4-RTF GCTATGGGTGATTTGGATGTCG
FpAPSES1-RTR TCGACATCTG GAGACATCTC
FpAPSES4-RTR GTTCTTTCATGACCATAGG

Table 2

Basic properties of FpAPSES transcription factors"

蛋白名称
Protein name
基因ID
Gene ID
转录号
Transcription number
蛋白大小
Size (aa)
蛋白分子量Molecular weight (kD) 蛋白等电点
Isoelectric point (PI)
FpAPSES1 XP_009261816.1 FPSE_10424 794 86.28 6.02
FpAPSES2 XP_009258602.1 FPSE_07209 420 46.08 5.78
FpAPSES3 XP_009254016.1 FPSE_02622 702 77.12 6.34
FpAPSES4 XP_009258789.1 FPSE_07396 675 75.55 5.30

Fig. 1

Domains and phylogenetic tree of FpAPSES proteins"

Fig. 2

Expression profiles of FpAPSES1 and FpAPSES4 at F. pseudograminearum infection stages"

Fig. 3

Gene knockout for FpAPSES1 and FpAPSES4"

Fig. 4

Mycelial growth assays of F. pseudograminearum"

Fig. 5

Conidia production and germination assays of F. pseudograminearum"

Fig. 6

Pathogenicity assays of F. pseudograminearum WT, Δfpapses1 and Δfpapses4 on wheat coleoptiles"

Fig. 7

Pathogenicity assays of F. pseudograminearum WT, Δfpapses1 and Δfpapses4 on barley leaves and wheat stem bases"

Fig. 8

DON production assays of F. pseudograminearum WT, Δfpapses1 and Δfpapses4 strains"

[1] LI H L, YUAN H X, FU B, XING X P, SUN B J, TANG W H. First report of Fusarium pseudograminearum causing crown rot of wheat in Henan, China. Plant Disease, 2012, 96(7):1065.
[2] ZHOU H F, HE X L, WANG S, MA Q Z, SUN B J, DING S L, CHEN L L, ZHANG M, LI H L. Diversity of the Fusarium pathogens associated with crown rot in the Huanghuai wheat-growing region of China. Environmental Microbiology, 2019, 21(8):2740-2754.
doi: 10.1111/emi.2019.21.issue-8
[3] KAZAN K, GARDINER D M. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: Recent progress and future prospects. Molecular Plant Pathology, 2018, 19(7):1547-1562.
doi: 10.1111/mpp.2018.19.issue-7
[4] OBANOR F, NEATE S, SIMPFENDORFER S, SABBURG R, WILSON P, CHAKRABORTY S. Fusarium graminearum and Fusarium pseudograminearum caused the 2010 head blight epidemics in Australia. Plant Pathology, 2013, 62(1):79-91.
doi: 10.1111/ppa.2012.62.issue-1
[5] ZHAO Y, SU H, ZHOU J, FENG H H, ZHANG K Q, YANG J K. The APSES family proteins in fungi: Characterizations, evolution and functions. Fungal Genetics and Biology, 2015, 81:271-280.
doi: 10.1016/j.fgb.2014.12.003
[6] LIU J F, HUANG J G, ZHAO Y X, LIU H A, WANG D W, YANG J, ZHAO W S, TAYLOR I A, PENG Y L. Structural basis of DNA recognition by PCG2 reveals a novel DNA binding mode for winged helix-turn-helix domains. Nucleic Acids Research, 2015, 43(2):1231-1240.
doi: 10.1093/nar/gku1351
[7] QI Z Q, WANG Q, DOU X Y, WANG W, ZHAO Q, LV R L, ZHANG H F, ZHENG X B, WANG P, ZHANG Z G. MoSwi6, an APSES family transcription factor, interacts with MoMps1 and is required for hyphal and conidial morphogenesis, appressorial function and pathogenicity of Magnaporthe oryzae. Molecular Plant Pathology, 2012, 13(7):677-689.
doi: 10.1111/mpp.2012.13.issue-7
[8] MILES S, LI L, DAVISON J, BREEDEN L L. Xbp1 directs global repression of budding yeast transcription during the transition to quiescence and is important for the longevity and reversibility of the quiescent state. PLoS Genetics, 2013, 9(10):e1003854.
doi: 10.1371/journal.pgen.1003854
[9] GIMENO C J, FINK G R. Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Molecular and Cellular Biology, 1994, 14(3):2100-2112.
[10] PARK H, MYERS C L, SHEPPARD D C, PHAN Q T, SANCHEZ A A, EDWARDS J E, FILLER S G. Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cellular Microbiology, 2005, 7(4):499-510.
doi: 10.1111/cmi.2005.7.issue-4
[11] STOLDT V R, SONNEBORN A, LEUKER C E, ERNST J F. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. The EMBO Journal, 1997, 16(8):1982-1991.
doi: 10.1093/emboj/16.8.1982
[12] LYSOE E, PASQUALI M, BREAKSPEAR A, KISTLER H C. The transcription factor FgStuAp influences spore development, pathogenicity, and secondary metabolism in Fusarium graminearum. Molecular Plant-Microbe Interactions, 2011, 24(1):54-67.
doi: 10.1094/MPMI-03-10-0075
[13] NISHIMURA M, FUKADA J, MORIWAKI A, FUJIKAWA T, OHASHI M, HIBI T, HAYASHI N. Mstu1, an APSES transcription factor, is required for appressorium-mediated infection in Magnaporthe grisea. Bioscience, Biotechnology and Biochemistry, 2009, 73(8):1779-1786.
doi: 10.1271/bbb.90146
[14] RATH M, CRENSHAW N J, LOFTON L W, GLENN A E, GOLD S E. FvSTUA is a key regulator of sporulation, toxin synthesis, and virulence in Fusarium verticillioides. Molecular Plant-Microbe Interactions, 2020, 33(7):958-971.
doi: 10.1094/MPMI-09-19-0271-R
[15] 周欣, 云英子, 郭谱胜, 吴凯莉, 陈伟钟, 李江江, 周晓莉. 尖孢镰刀菌番茄专化型中APSES转录因子FolStuA的功能分析. 分子植物育种, 2018, 16(3):772-780.
ZHOU X, YUN Y Z, GUO P S, WU K L, CHEN W Z, LI J J, ZHOU X L. Functional analysis of APSES transcription factor FolStuA in Fusarium oxysporum f. sp. lycopersici. Molecular Plant Breeding, 2018, 16(3):772-780. (in Chinese)
[16] GARDINER D M, BENFIELD A H, STILLER J, STEPHEN S, AITKEN K, LIU C, KAZAN K. A high-resolution genetic map of the cereal crown rot pathogen Fusarium pseudograminearum provides a near-complete genome assembly. Molecular Plant Pathology, 2018, 19(1):217-226.
doi: 10.1111/mpp.2018.19.issue-1
[17] FINN R D, BATEMAN A, CLEMENTS J, COGGILL P, EBERHARDT R Y, EDDY S R, HEGER A, HETHERINGTON K, HOLM L, MISTRY J, SONNHAMMER E L L, TATE J, PUNTA M. Pfam: The protein families database. Nucleic Acids Research, 2014, 42:D222-D230.
doi: 10.1093/nar/gkt1223
[18] HALL B G. Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 2013, 30(5):1229-1235.
doi: 10.1093/molbev/mst012
[19] CATLETT N L, LEE B, YODER O C, TURGEON B G. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genetics Reports, 2003, 50:9-11.
doi: 10.4148/1941-4765.1150
[20] 张承启, 廖露露, 齐永霞, 丁克坚, 陈莉. 禾谷镰孢核孔蛋白基因FgNup42的功能分析. 中国农业科学, 2021, 54(9):1894-1903.
ZHANG C Q, LIAO L L, QI Y X, DING K J, CHEN L. Functional analysis of the nucleoporin gene FgNup42 in Fusarium graminearium. Scientia Agriculture Sinica, 2021, 54(9):1894-1903. (in Chinese)
[21] LIU Z H, FRIESEN T L. Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens. Methods in Molecular Biology, 2012, 835:365-375.
[22] CHEN L L, GENG X J, MA Y M, ZHAO J Y, LI T L, DING S L, SHI Y, LI H L. Identification of basic helix-loop-helix transcription factors reveals candidate genes involved in pathogenicity of Fusarium pseudograminearum. Canadian Journal of Plant Pathology, 2019, 41(2):200-208.
doi: 10.1080/07060661.2018.1564941
[23] TUNALI B, OBANOR F, ERGINBAS G, WESTECOTT R A, NICOL J, CHAKRABORTY S. Fitness of three Fusarium pathogens of wheat. FEMS Microbiology Ecology, 2012, 81(3):596-609.
doi: 10.1111/j.1574-6941.2012.01388.x
[24] CHUNG D, UPADHYAY S, BOMER B, WILKINSON H H, EBBOLE D J, SHAW B D. Neurospora crassa ASM-1 complements the conidiation defect in a stuA mutant of Aspergillus nidulans. Mycologia, 2015, 107(2):298-306.
doi: 10.3852/14-079
[25] MILLER K Y, TOENNIS T M, ADAMS T H, MILLER B L. Isolation and transcriptional characterization of a morphological modifier: The Aspergillus nidulans stunted (stuA) gene. Molecular and General Genetics, 1991, 227(2):285-292.
doi: 10.1007/BF00259682
[26] FOORD R, TAYLOR I A, SEDGWICK S G, SMERDON S J. X-ray structural analysis of the yeast cell cycle regulator Swi6 reveals variations of the ankyrin fold and has implications for Swi6 function. Nature Structural Biology, 1999, 6(2):157-165.
doi: 10.1038/5845
[27] KOCH C, MOLL T, NEUBERG M, AHORN H, NASMYTH K. A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science, 1993, 261(5128):1551-1557.
doi: 10.1126/science.8372350
[28] AMIGONI L, COLOMBO S, BELOTTI F, ALBERGHINA L, MARTEGANI E. The transcription factor Swi4 is target for PKA regulation of cell size at the G1to S transition in Saccharomyces cerevisiae. Cell Cycle, 2015, 14(15):2429-2438.
doi: 10.1080/15384101.2015.1055997
[29] JIANG L, WANG J, ASGHAR F, SNYDER N, CUNNINGHAM K W. CaGdt1 plays a compensatory role for the calcium pump CaPmr1 in the regulation of calcium signaling and cell wall integrity signaling in Candida albicans. Cell Communication and Signaling, 2018, 16(1):33.
doi: 10.1186/s12964-018-0246-x
[30] MEDINA E M, WALSH E, BUCHLER N E. Evolutionary innovation, fungal cell biology, and the lateral gene transfer of a viral KilA-N domain . Current Opinion in Genetics and Development, 2019, 58/59:103-110.
[31] 王大伟. 稻瘟病菌APSES转录因子Pcg2的作用及其机理的研究[D]. 北京: 中国农业大学, 2014.
WANG D W. Functional characterization of the APSES transcription factor Pcg2 in the rice blast fungus[D]. Beijing: China Agricultural University, 2014. (in Chinese)
[32] SON H, SEO Y S, MIN K, PARK A R, LEE J, JIN J M, LIN Y, CAO P, HONG S Y, KIM E K, et al. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathogens, 2011, 7(10):e1002310.
doi: 10.1371/journal.ppat.1002310
[1] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[2] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[3] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[4] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[5] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[6] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[7] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[8] ZHENG XinShi,SHANG PengXiang,LI JingYuan,DING XinLun,WU ZuJian,ZHANG Jie. Effects of Proteins Encoded by “C4 ORFs” of Cotton Leaf Curl Multan Virus on Viral Pathogenicity [J]. Scientia Agricultura Sinica, 2021, 54(10): 2095-2104.
[9] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[10] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[11] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
[12] WANG BaoBao,GUO Cheng,SUN SuLi,XIA YuSheng,ZHU ZhenDong,DUAN CanXing. The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot [J]. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790.
[13] SUN Qi,HE Fang,SHAO ShengNan,LIU Zheng,HUANG JiaFeng. Cloning and Functional Analysis of VdHP1 in Verticillium dahliae from Cotton [J]. Scientia Agricultura Sinica, 2020, 53(14): 2872-2884.
[14] QI Yue,LÜ JunYuan,ZHANG Yue,WEI Jie,ZHANG Na,YANG WenXiang,LIU DaQun. Puccinia triticina Effector Protein Pt18906 Triggered Two-Layer Defense Reaction in TcLr27+31 [J]. Scientia Agricultura Sinica, 2020, 53(12): 2371-2384.
[15] WANG XiaoNing,LIANG Huan,WANG Shuai,FANG WenSheng,XU JingSheng,FENG Jie,XU Jin,CAO AoCheng. Function of Copper-Resistant Gene copA of Ralstonia solanacearum [J]. Scientia Agricultura Sinica, 2019, 52(5): 837-848.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!