Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (10): 2053-2063.doi: 10.3864/j.issn.0578-1752.2021.10.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide Association Analysis of Wheat Grain Size Related Traits Based on SNP Markers

ZHANG Fang1(),REN Yi1,CAO JunMei2,LI FaJi3,XIA XianChun4,GENG HongWei1()   

  1. 1College of Agriculture, Xinjiang Agricultural University/Key Laboratory of Agricultural Biological Technology, Urumqi 830052
    2Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091
    3Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Huang-Huai River Valley, Ministry of Agriculture, Jinan 250100
    4Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Wheat Improvement Center, Beijing 100081
  • Received:2020-10-28 Accepted:2020-12-02 Online:2021-05-16 Published:2021-05-24
  • Contact: HongWei GENG E-mail:1807681776@qq.com;hw-geng@163.com

Abstract:

【Objective】Grain traits are important factors affecting wheat yield. the significant locus of controlling wheat grain traits was explored by genome-wide association analysis of wheat grain traits, which provided a theoretical reference for the study of genetic improvement of wheat grain traits. 【Method】The genome-wide association analysis (GWAS) based on mixed linear model MLM (Q+K) was performed on 121 wheat grown in Xinjiang using wheat 50 K SNP chips for 6 traits which including grain length, grain width, grain length-width ratio, grain area, grain perimeter and 1000-grain weight.【Result】Six grain traits showed wide phenotypic variation in different environments, in which the maximum coefficient of variation of 1000-grain weight was 13.91-17.79 and the heritability of each grain trait was between 0.85-0.90. The polymorphism information content PIC value was 0.09-0.38, and the minimum allele frequency MAF value was 0.05-0.50. Group structure analysis shows that the natural groups used in the experiment can be divided into 4 subgroups. GWAS results showed that a total of 592 significant association sites (P<0.001) were detected in 6 traits, of which 29 SNPs were repeatedly detected in 2 or more environments, distributed in 1A(5), 1B(2), 1D, 2A(5), 3B, 5A, 5D, 6B(4), 6D, 7B and 7D(7) chromosomes, can explain 9.3% to 22.7% of the phenotypic variation. Six markers associated with stable grain length were detected, which distributed on 1A, 2A, and 7D chromosomes to explain the phenotypic variation of 9.9%-22.7%. Two markers associated with stable grain width were detected, which distributed on 3 B and 5 D chromosomes to explain the phenotypic variation of 9.6%-12.2%. Six markers associated with stable grain length-width ratio were detected, which distributed on 2A(2), 5A, 7B, and 7D(2) chromosomes to explain the phenotypic variation of 10.1%-19.4%. Three markers associated with stable grain area were detected, which distributed on 1A, 1B and 1D chromosome to explain the phenotypic variation of 9.9%-18.2%. Six markers with stable correlation with grain perimeter were detected, which distributed on 1A(2), 2A, 6D and 7D(2) chromosomes to explain the phenotypic variation of 9.3%-22.6%. Six markers associated with stable 1000-grain weight were detected, which distributed on 1B, 2A and 6B chromosomes to explain the phenotypic variation 9.7%-12.9%. Five dominant loci of pleiotropism with were found to control wheat grain traits, which distributed 1A, 2A(2) and 7D(2) chromosomes, explaining the phenotypic variation of 9.9%-22.7%.【Conclusion】In this study, the genetic diversity of the materials was abundant, a total of 29 multi-environment stability loci were found in natural population with 2 or more environmental associated with 6 grain traits.

Key words: wheat, SNP marker, GWAS, grain size-related traits

Table 1

Phenotypic data analysis of grain size related traits in the wheat nature population"

性状
Trait
环境
Environment
平均值
Mean
范围
Range
标准差
SD
变异系数
CV (%)
偏度
Ske.
峰度
Kur.
千粒重
TKW
2017 22.92 14.86—32.28 4.08 17.79 -0.18 -0.43
2018 35.55 23.13—49.03 4.95 13.91 0.05 -0.02
2019 37.84 19.15—54.15 5.62 14.85 -0.02 0.41
粒长
GL
2017 6.44 5.66—7.59 0.34 5.24 0.54 0.88
2018 6.63 5.67—7.48 0.31 4.66 0.20 0.54
2019 6.61 5.78—7.51 0.31 4.69 0.16 0.06
粒宽
GW
2017 3.14 2.61—3.61 0.24 7.52 -0.39 -0.28
2018 3.15 2.61—3.65 0.22 6.95 -0.19 -0.65
2019 3.27 2.69—3.64 0.18 5.50 -0.43 0.03
长宽比
LWR
2017 2.09 1.75—2.67 0.19 9.12 0.74 0.20
2018 2.13 1.81—2.58 0.16 7.39 0.59 -0.06
2019 2.03 1.75—2.41 0.13 6.40 0.68 0.43
籽粒面积 GA 2017 15.82 11.88—19.59 1.54 9.74 -0.11 0.16
2018 16.24 12.55—21.34 1.59 9.76 0.23 0.02
2019 16.67 12.65—20.84 1.38 8.28 -0.01 0.63
籽粒周长 GC 2017 16.61 14.52—18.62 0.76 4.56 0.07 0.67
2018 16.78 14.61—19.11 0.72 4.30 0.22 0.58
2019 17.27 15.73—19.80 0.72 4.17 0.25 0.44

Table 2

Analysis of variance of grain size related traits in the wheat"

性状
Trait
均方MS FF value 遗传力
h2
基因型
Genotype
环境
Environment
基因型×环境
G×E
误差
Error
基因型
Genotype
环境
Environment
基因型×环境
G×E
千粒重TKW 157.46 17050.92 27.47 4.43 35.54*** 3848.31*** 6.20*** 0.85
粒长GL 0.60 2.74 0.10 0.02 37.54*** 170.47*** 6.18*** 0.86
粒宽GW 0.29 1.63 0.04 0.01 22.98*** 131.03*** 2.84*** 0.89
长宽比LWR 0.16 0.96 0.02 0.00 40.15*** 236.77*** 4.53*** 0.90
籽粒面积GA 14.19 52.10 1.96 0.53 26.59*** 97.66*** 3.68*** 0.87
籽粒周长GC 3.28 36.25 0.52 0.14 23.40*** 258.40*** 3.71*** 0.86

Table 3

Correlation analysis of grain size related traits in the wheat"

性状Trait 千粒重TKW 粒长GL 粒宽GW 长宽比LWR 籽粒面积GA
粒长GL 0.36***
粒宽GW 0.93*** 0.22*
长宽比LWR -0.64*** 0.42*** -0.78***
籽粒面积GA 0.90*** 0.64*** 0.88*** -0.41***
籽粒周长GC 0.58*** 0.94*** 0.49*** 0.15ns 0.83***

Supplemental table 1

Genome coverage and marker polymorphism"

染色体 Chromosome 标记数量

No. of markers
物理长度
Physical distance (Mb)
标记密度Density of marker 遗传多样性Genetic diversity 最小等位基因频率MAF 多态信含量 PIC
平均
Mean
范围
Range
平均
Mean
范围
Range
1A 2544 602.45 0.24 0.35 0.25 0.05—0.50 0.28 0.09—0.38
1B 1469 746.65 0.29 0.34 0.25 0.05—0.50 0.27 0.09—0.38
1D 1486 498.09 0.20 0.36 0.26 0.05—0.50 0.29 0.09—0.38
2A 2682 787.57 0.31 0.38 0.29 0.05—0.50 0.3 0.09—0.38
2B 2177 802.80 0.32 0.37 0.27 0.05—0.50 0.29 0.09—0.38
2D 1308 655.89 0.26 0.37 0.27 0.05—0.50 0.29 0.09—0.38
3A 2252 750.52 0.29 0.46 0.37 0.25—0.50 0.35 0.30—0.38
3B 2275 868.70 0.34 0.42 0.33 0.17—0.50 0.33 0.24—0.38
3D 1201 626.21 0.25 0.36 0.27 0.05—0.50 0.29 0.09—0.38
4A 2063 750.43 0.29 0.46 0.39 0.26—0.50 0.36 0.30—0.38
4B 1327 672.85 0.26 0.39 0.29 0.11—0.50 0.31 0.18—0.38
4D 817 521.81 0.20 0.39 0.29 0.05—0.50 0.31 0.09—0.38
5A 2251 709.53 0.28 0.49 0.43 0.35—0.50 0.37 0.35—0.38
5B 1605 713.57 0.28 0.46 0.38 0.26—0.50 0.35 0.29—0.38
5D 1373 573.30 0.22 0.41 0.31 0.16—0.50 0.32 0.23—0.38
6A 2315 625.50 0.24 0.49 0.43 0.34—0.50 0.37 0.35—0.38
6B 1305 725.17 0.28 0.45 0.37 0.21—0.50 0.35 0.28—0.38
6D 1330 498.56 0.19 0.45 0.36 0.20—0.50 0.34 0.27—0.38
7A 2407 745.91 0.29 0.48 0.41 0.31—0.50 0.36 0.34—0.38
7B 1332 750.19 0.29 0.45 0.37 0.22—0.50 0.35 0.28—0.38
7D 1354 643.15 0.25 0.44 0.32 0.19—0.50 0.33 0.26—0.38
A基因组A genome 16514 4971.91 0.30 0.44 0.37 0.05—0.50 0.34 0.09—0.38
B基因组 B genome 11490 5279.93 0.46 0.41 0.32 0.05—0.50 0.32 0.09—0.38
D基因组 D genome 8869 4017.01 0.45 0.40 0.30 0.05—0.50 0.31 0.09—0.38
总计Total 36873 14268.85 0.39 0.42 0.33 0.05—0.50 0.32 0.09—0.38

Fig. 1

Population structure of 121 wheat accessions"

Fig. 2

Manhattan plots for grain size related traits of the diverse panel at average environment A: Grain length; b: Grain width; c: Length width ratio; d: Grain area; e: Grain circle; f: Thousand kernel weight"

Table 4

Loci for grain size related traits in the diversity panel identified by SNP-GWAS"

性状
Trait
标记
Marker
染色体 Chr. 位置
Position (Mb)
混合线性模型MLM 环境
Environment
前人报道
Previously reported
PP value 贡献率R2 (%)
千粒重
TKW
AX-111669426 1B 375.4 5.94E-04-7.67E-04 10.4—10.5 E1/E4 Xwmc269-Xwmc33[27]
AX-111531320 2A 204.5 5.88E-04-8.98E-04 10.3—11.3 E2/E4
AX-109874065 6B 34.0 7.73E-04-9.84E-04 9.7—10.4 E1/E2 TKW-xgwm533[28]
AX-110446017 6B 486.1 3.98E-04-7.98E-04 10.3—12.9 E1/E2 QKWpur-6B[24] AX_110368497 [25]
AX-110936500 6B 569.4 4.97E-04-6.86E-04 10.5—10.6 E1/E2
AX-109493716 6B 573.6 4.92E-04-6.58E-04 11.0—11.8 E1/E2
粒长
GL
AX-94757616 1A 64.6 3.56E-04-7.55E-04 10.7—11.9 E2/E4
AX-111082947 1A 473.7 1.41E-06-9.42E-04 9.9—22.7 E1/E2/E3/E4
AX-94497666 2A 748.4 3.30E-04-7.90E-04 10.3—11.8 E1/E2/E3/E4 TaFlo2[25-26]
AX-111614568 7D 13.7—13.9 1.96E-05-2.03E-04 12.9—17.3 E3/E4 TaGS-D1[29]
AX-95633409 7D 33.6 4.46E-04-8.05E-04 10.7—11.9 E3/E4 QKLpur-7D.1[24]
AX-111197303 7D 47.4—49.2 2.70E-04-8.32E-04 10.9—12.6 E1/E4 QKL.caas-7DS [30] QGw.ccsu-7D.1 [31]
粒宽
GW
AX-108948870 3B 24.6 5.20E-04-9.21E-04 10.6—12.2 E1/E4 Kukri_c14642_917[23]
AX-179477405 5D 210.6 6.78E-04-8.33E-04 9.6—10.6 E2/E4
粒长宽比
LWR
AX-111722425 2A 131.7 1.38E-05-9.53E-04 10.1—18.3 E1/E2/E3/E4
AX-111531320 2A 204.5 3.57E-05-3.28E-04 13.0—17.1 E2/E3
AX-179560109 5A 141.9 1.02E-04-1.08E-04 14.7—15.2 E2/E3
AX-112286258 7B 709.1 1.48E-05-4.09E-04 11.1—19.4 E1/E3 QGlwr.ccsu-7B.1[32]
AX-111614568 7D 13.7—13.9 4.98E-05-5.51E-05 10.9—15.9 E1/E4 TaGS-D1[29]
AX-158554015 7D 403.7 6.09E-05-6.42E-04 10.8—15.4 E1/E2
籽粒面积
GA
AX-95176275 1A 146.6 5.92E-04-9.82E-04 9.9—11.2 E1/E4
AX-179476290 1B 377.4 1.21E-05-8.31E-04 10.0—18.2 E3/E4 qKA1B-1[33]
AX-179477117 1D 220.5 1.21E-05-8.31E-04 10.0—18.2 E3/E4
籽粒周长
GC
AX-111082947 1A 473.7 1.34E-06-5.56E-04 10.1—22.6 E1/E3/E4
AX-109382284 1A 546.8 2.27E-06-3.55E-04 11.8—21.3 E3/E4
AX-94497666 2A 748.4 7.62E-04-8.68E-04 9.3—10.3 E1/E4 TaFlo2[25,26]
AX-111583179 6D 242.7 2.11E-04-5.00E-04 12.0—13.2 E2/E3
AX-111614568 7D 13.7—13.9 1.04E-04-3.72E-04 11.7—14.2 E3/E4 TaGS-D1[29]
AX-111197303 7D 47.4—49.2 7.15E-04-8.05E-04 10.0—10.4 E1/E4 QKL.caas-7DS [30] QGw.ccsu-7D.1 [31]
[1] 庄巧生. 产量潜力改良中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003: 498-519.
ZHUANG Q S. Wheat Improvement and Pedigree Analysis in China. Beijing: Chinese Agricultural Press, 2003. (in Chinese)
[2] GODFRAY H C, BEDDINGTON J R, CRUTE I R, HADDAD L, LAWRENCE D, MUIR J F, PRETTY J, ROBINSON S, THOMAS S M, TOULMIN C. Food security: The challenge of feeding 9 billion people. Science, 2010,327(5967):812-818.
doi: 10.1126/science.1185383
[3] XIN F, ZHU T, WEI, S W, HAN Y C, ZHAO Y, ZHANG D Z, MA L J, DING Q. QTL mapping of kernel traits and validation of a major QTL for kernel length-width ratio using SNP and bulked segregant analysis in wheat. Scientific Reports, 2020,10(1):12-25.
doi: 10.1038/s41598-019-55410-5
[4] ROSEGRANT M W, AGCAOILI S M. Global and regional food demand, supply and trade prospects to 2010. Washington: International Food Policy Research Institute Press, 1995: 61-84.
[5] REYNOLDS M, BONNETT D, CHAPMAN S C, FURBANK R T, MANE’S Y, MATHER D E, PARRY M A J. Raising yield potential of wheat I overview of a consortium approach and breeding strategies. Journal of Experimental Botany, 2011,62(2):439-452.
doi: 10.1093/jxb/erq311
[6] BENNETT M D, SMITH J B. Nuclear DNA amounts in angiosperms. Philosophical transactions of the royal society of London, 1976,274(933):227-274.
[7] 冯建英, 温阳俊, 张瑾, 章元明. 关联分析方法的研究进展. 作物学报, 2016,42(7):945-956.
FENG J Y, WEN Y J, ZHANG J, ZHANG Y M. Advances on methodologies for genome-wide association studies in plants. Acta Agronomica Sinica, 2016,42(7):945-956. (in Chinese)
[8] BROOKES A J. The essence of SNPs. Gene, 1999,234(2):177-186.
doi: 10.1016/S0378-1119(99)00219-X
[9] RAFALSKI A. Applications of single nucleotide polymorphisms in crop genetics. Current Opinion in Plant Biology, 2002,5(2):94-100.
doi: 10.1016/S1369-5266(02)00240-6
[10] 郑德波, 杨小红, 李建生, 严建兵, 张士龙, 贺正华, 黄益勤. 基于SNP标记的玉米株高及穗位高QTL定位. 作物学报, 2013,39(3):549-556.
ZHENG D B, YANG X H, LI J S, YAN J B, ZHANG S L, HE Z H, HUANG Y Q. QTL identification for plant height and ear height based on SNP mapping in maize (Zea mays L.). Acta Agronomica Sinica, 2013,39(3):549-556. (in Chinese)
[11] WANG S C, WONG D, FORREST K, ALLEN A, CHAO S, HUANG B E, MACCAFERRI M, SALVI S, MILNER S G, CATTIVELLI L, MASTRANGELO A M, WHAN A, STEPHEN S, BARKER G, WIESEKE R, PLIESKE J, IWGSC, LILLEMO M, MATHER D, APPELS R, DOLFERUS R, GUEDIRA G B, KOROL A, AKHUNOVA A R, FEUILLET C, SALSE J, MORGANTE M, POZNIZK C, LUO M C, DVORAK J, MORELL M, DUBCOVSKY J, GANAL M, TUBEROSA R, LAWLEY C, MIKOULITCH I, CAVANAGH C, EDWARDS K, HAYDEN M, AKHUNOV E. Characterization of polyploid wheat genomic diversity using a high-density 90, 000 single nucleotide polymorphism array. Plant Biotechnology Journal, 2014,12:787-796.
doi: 10.1111/pbi.2014.12.issue-6
[12] 吴凯. 农作物SNP芯片技术及其在分子育种中的应用. 山西农业科学, 2018,46(4):670-672.
WU K. Research progress on crop SNP chip technology and its application in molecular breeding. Journal of Shanxi Agricultural Sciences, 2018,46(4):670-672. (in Chinese)
[13] LIU J J, LUO W, QIN N, DING P, ZHANG H, YANG C C, MU Y, TANG H P, LIU Y X, LI W, JIANG Q T, CHEN G Y, WEI Y M, ZHENG Y L, LIU C J, LAN X J, MA J. A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theoretical and Applied Genetics, 2018,131:2439-2450.
doi: 10.1007/s00122-018-3164-9
[14] CAMPBELL K G, BERGMAN C J, GUALBERTO D G, ANDERSON J A, GIROUX M J, HARELAND G, FULCHER G, SORRELLS M E, FINNEY P L. Quantitative trait loci associated with kernel traits in a soft×hard wheat cross. Crop Science, 1999,39:1184-1195.
doi: 10.2135/cropsci1999.0011183X003900040039x
[15] AMMIRAJU J S S, DHOLAKIA B B, SANTRAH D K, LAGU M D, DHALIWAL H S, RAO V S, GUPTA V S, RANJEKAR P K. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theoretical and Applied Genetics, 2001,102:726-732.
doi: 10.1007/s001220051703
[16] BRESEGHELLO F, SORRELLS M E. QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crops Research, 2007,101:172-179.
doi: 10.1016/j.fcr.2006.11.008
[17] LI X J, LI L Q, WANG H, SORRELLS M E. Quantitative trait loci analysis for kernel length and width in wheat. Journal of Northwest Agriculture and Forestry University, 2009,37(3):95-100.
[18] PANTALIAÕ G F, NARCISO M, GUIMARÃES C, CASTRO A, COLOMBARI J M, BRESEGHELLO F, RODRIGUES L, VIANELLO R P, BORBA T O, BRONDANI C. Genome wide association study for grain yield in rice cultivated under water deficit. Genetica, 2016,144:651-664.
doi: 10.1007/s10709-016-9932-z
[19] YANO K, YAMAMOTO E, AYAL K, TAKEUCHI H, LO P C, HU L, YAMASAKI M, YOSHIDA S, KITANO H, HIRANO K, MATSUOKA M. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetic, 2016,48:927-936.
doi: 10.1038/ng.3596
[20] WU X, LI Y X, SHI Y S, SONG Y C, ZHANG D F, LI C H, BUCKLER E S, LI Y, ZHANG Z W, WANG T Y. Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnology, 2016,14:1551-1562.
[21] ATANASOV K E, BARQUERO B L, TIBURCIO A F, RUBEN A. Genome wide association mapping for the tolerance to the polyamine oxidase inhibitor guazatine in Arabidopsis thaliana. Front Plant Science, 2016,7:588-589.
[22] BHATTA M, SHAMANIN V, SHEPELEV S, BAENZIGER P S, POZHERUKOVA V, POTOTSKAYA I, MORGOUNOV A. Marker-trait associations for enhancing agronomic performance, disease resistance, and grain quality in synthetic and bread wheat accessions in western Siberia. Genes, 2019,10:1-44.
doi: 10.3390/genes10010001
[23] SUN C W, ZHANG F Y, YAN X F, ZHANG X F, DONG Z D, CUI D Q, CHEN F. Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnology Journal, 2017,15:953-969.
doi: 10.1111/pbi.2017.15.issue-8
[24] DABA S D, TYAGI P, BROWN G G, MOHAMMADI M. Genome-wide association studies to identify loci and candidate genes controlling kernel weight and length in a historical united states wheat population. Front Plant Science, 2018,9:1045-1059.
doi: 10.3389/fpls.2018.01045
[25] LI F J, WEN W E, LIU J D, ZHANG Y, CAO S H, HE Z H, RASHEED A, JIN H, ZHANG C, YAN J, ZHANG P Z, WAN Y X, XIA X C. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biology, 2019,19:168-187.
doi: 10.1186/s12870-019-1781-3
[26] SAJJAD M, MA X L, KHAN S H, SHOAIB M, SONG Y H, YANG W L, ZHANG A, LIU D C. TaFlo2-A1, an ortholog of rice Flo2, is associated with thousand grain weight in bread wheat. BMC Plant Biology, 2017. DOI 10.1186/s12870-017-1114-3.
[27] 王瑞霞, 张秀英, 伍玲, 王瑞, 海林, 游光霞, 闫长生, 肖世和. 不同生态环境下冬小麦籽粒大小相关性状的QTL分析. 中国农业科学, 2009,42(2):398-407.
WANG R X, ZHANG X Y, WU L, WANG R, HAI L, YOU G X, YAN C S, XIAO S H. QTL analysis of grain size and related traits in winter wheat under different ecological environments. Scientia Agricultura Sinica, 2009,42(2):398-407. (in Chinese)
[28] 张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009,35(2):270-278.
ZHANG K P, XU X B, TIAN J C. QTL mapping for grain yield and spike related traits in common wheat. Acta Agronomica Sinica, 2009,35(2):270-278. (in Chinese)
[29] ZHANG Y J, LIU J D, XIA X C, HE Z H. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Molecular Breeding, 2014,34(3):1097.
doi: 10.1007/s11032-014-0102-7
[30] LI F J, WEN W E, HE Z H, LIU JD, JIN H, GENG H W, YAN J, ZHANG P Z, WAN Y X, XIA X C. Genome-wide linkage mapping of yield related traits in three Chinese bread wheat populations using high-density SNP markers. Theoretical and Applied Genetics, 2018,131:1903-1924.
doi: 10.1007/s00122-018-3122-6
[31] MIR R R, KUMAR N, JAISWALI V, GIRDHARWAL N, PRASAD M, BALYAN H S, GUPTA P K. Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Molecular Breeding, 2012,29:963-972.
doi: 10.1007/s11032-011-9693-4
[32] KUMARI S, JAISWAL V, MISHRA V K, PALIWAL R, BALYAN H S, GUPTA P H. QTL mapping for some grain traits in bread wheat (Triticum aestivum L.). Physiology Molecular Biology Plants, 2018,24(5):909-920.
doi: 10.1007/s12298-018-0552-1
[33] XIN F, ZHU T, WEI S W, HAN Y C, ZHAO Y, ZHANG D Z, MA L J, DING Q. QTL Mapping of kernel traits and validation of a major QTL for kernel length-width ratio using SNP and bulked segregant analysis in wheat. Scientific Reports, 2020,10:25-37.
doi: 10.1038/s41598-019-56979-7
[34] GILL B S, APPELS R, OTHAOBERHOLSTER A M B, BUELL C R, BENNETZEN J L B, CHALHOUB B, CHUMLEY F, DVORAK J, IWANAGA M, KELLER B, LI W L, MCCOMBIE W R, OGIHARA Y, QUETIER F, SASAKI T. A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics, 2004,168(2):1087-1096.
doi: 10.1534/genetics.104.034769
[35] DHOLAKIA B B, AMMIRAJU J S S, Singh H, LAGU M D, RODER M S, RAO V S, DHALIWAL H S, RANJEKAR P K, GUPTA V S. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breeding, 2003,122(5):392-395.
doi: 10.1046/j.1439-0523.2003.00896.x
[36] GEGAS V C, NAZARI A, GRIFFITHS S, SIMMONDS J, FISH L, ORFORD S, SAYERS L, DOONAN J H, SNAPE J W. A genetic framework for grain size and shape variation in wheat. The Plant Cell, 2010,22(6):1046-1056.
doi: 10.1105/tpc.110.074153
[37] 陈佳慧, 兰进好, 王晖, 王道峰, 林琪, 田纪春. 小麦籽粒构型性状与粒重的相关性分析. 中国种业, 2010,8:57-59.
CHEN J H, LAN J H, WANG H, WANG D F, LIN Q, TIAN J C. Correlation analysis of wheat grain configuration traits and grain weight. China Seed Industry, 2010,8:57-59. (in Chinese)
[38] 余曼丽, 赵林姝, 郭会君, 古佳玉, 李军辉, 谢永盾, 赵世荣, 刘录祥. 小麦籽粒性状的QTL定位. 麦类作物学报, 2014,34(8):1029-1035.
YU M L, ZHAO L S, GUO H J, GU J Y, LI J H, XIE Y D, ZHAO S R, LIU L X. QTL mapping for kernel traits in wheat. Journal of Triticeae Crops, 2014,34(8):1029-1035. (in Chinese)
[39] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析. 作物学报, 2020,46(8):1-11.
MA Y M, FENG Z Y, WANG W, ZHANG S J, GUO Y, NI Z F, LIU J. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits. Acta Agronomica Sinica, 2020,46(8):1-11. (in Chinese)
[40] CABRAL A L, JORDAN M C, LARSON G, SOMERS D J, HUMPHREYS D G, MCCARTNEY C A. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/AC domain. PLoS ONE, 2018,13(1):1-32.
[41] MUHAMMAD J, ALI A, GUL A, GHAFOOR A, NAPAR A A, IBRAHIM A M H, NAVEED N H, YASIN N A, KAZI A M. Genome-wide association studies of seven agronomic traits under two sowing conditions in bread wheat. BMC Plant Biology, 2019,19:149-167.
doi: 10.1186/s12870-019-1754-6
[42] CAO S H, XU D A, HANIF M, XIA X C, HE Z H. Genetic architecture underpinning yield component traits in wheat. Theoretical and Applied Genetics, 2020,178(1):539-551.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!