Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (10): 1950-1958.doi: 10.3864/j.issn.0578-1752.2020.10.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Improvement of the Resistance Against Sclerotinia sclerotiorum in Ogu CMS Restorer in Brassica napus Using Wild B. oleracea as Donor

WAN HuaFang,DING YiJuan,CHEN ZhiFu,MEI JiaQin(),QIAN Wei()   

  1. College of Agronomy and Biotechnology, Southwest University/Academy of Agricultural Sciences, Southwest University, Chongqing 400716
  • Received:2019-09-16 Accepted:2019-12-18 Online:2020-05-16 Published:2020-05-22
  • Contact: JiaQin MEI,Wei QIAN E-mail:jiaqinmey@163.com;qianwei666@hotmail.com

Abstract:

【Objective】Sclerotinia stem rot (SSR) is a devastating disease in rapeseed (Brassica napus L.). The resistance breeding is greatly limited due to the lack of resistance resources in rapeseed. Ogu CMS is one of the most effective pollination control systems in Brassica. Up to date, however, there has no Ogu CMS restorer with high resistance against SSR reported in rapeseed. High resistant source was reported in a wild B. oleracea which carried two major resistant loci, C1-and C9-QTL. The objective of this study is to transfer the resistance loci from the resistant B. oleracea and develop resistant Ogu CMS rapeseed restorer.【Method】Resynthesized rapeseed line was developed via interspecies cross between a SSR-resistant wild B. oleracea (namely B. incana) and B. rapa by embryo rescue and chromosome doubling. The hybridization was carried out between the resynthesized line and a rapeseed Ogu CMS line, followed by successive self-pollination. Marker assisted selection (MAS) was carried out in each generation to select individual plants carrying resistant loci from B. incana. These plants were screened for resistance level to SSR by inoculation test on detached branches. The plants which exhibited significant lower susceptibility (S) than rapeseed cultivar Zhongshuang 9 (the tolerant control) were then chosen for seed quality analysis. Fertile plants with relatively lower erucic acid and glucosinolate content were self-pollinated for the next generation development. Finally, self-pollinated lines carrying resistant QTL, exhibiting high resistant to SSR, performing good seed quality and yield were considered as SSR-resistant rapeseed Ogu CMS restorer.【Result】Resynthesized rapeseed line AC1-4 was successfully developed from the resistant B. oleracea and B. rapa, which showed significantly higher resistance level to SSR than the tolerant control Zhongshuang 9. From 146 F1 plants derived from AC1-4 and a rapeseed Ogu CMS line 4Q292, two individual plants (4C99 and 4C115) were selected to develop F2 generation, which carried resistant QTLs (C1- and C9-QTL) and exhibited normal seed setting and low susceptibility values (0.66 and 0.40, respectively). Among 124 F2 plants, eight individual plants with good self-fertility were selected to develop 982 F2:3 plants, from which a total of 50 individual plants were identified to carry resistant QTL C1-QTLand C9-QTL. Especially, two fertile plants (5X82-2 and 5X82-7) exhibited ‘single low’ seed quality (6.5% erucic acid in 5X82-7, and 45.38 μmol·g-1 meal glucosinolate in 5X82-7) and low susceptibility to SSR (S = 0.48 and 0.33, respectively).【Conclusion】It successfully improved SSR-resistance in Ogu CMS rapeseed restorer using wild B. oleracea as donor, which will be helpful for developing Ogu CMS restorer with high resistance against SSR and good seed quality in rapeseed.

Key words: Brassica napus, sclerotinia resistance, Ogu CMS, restorer

Table 1

SSR markers used in marker-assisted selection for resistant QTL"

序号
No.
标记
Marker
抗病QTL*
Resistant QTL
连锁群
Linkage group
R2(%) 引物序列
Primer sequence (5′-3′)
1 Na10-H06 qLR09-3/qLR10-1 C1 13.6 F:AGAATGAGACCCAGAAACCG
R:GCCACACTCTCTCTTACTAGGGC
2 SWUC150 qLR09-3/qLR10-1 C1 13.6 F:AGATCCTTGCAATTTCGCAC
R:TCCTGCAAAGCTTCATCCTC
3 SWUC455 qLR09-4/qLR10-2 C3 10.8 F:GACAACACAACAGACGCA
R:GCATTTCCCATTACTTCCA
4 SWUC427 qSR10-2 C7 3.4 F:CCTCTGTTTCTTTGCTCTTTG
R:GATTCATTGTGTGTGTGATGT
5 SWUC260 qSR09-1/qSR10-3 C9 16.1 F:AACGGCGCTCTAGAGGAAAT
R:AGCTGAACAGCTTGATTGGG
6 SWUC663 qSR09-1/qSR10-3 C9 16.1 F:TGCAGTCGGAATAACCATCA
R:TTCCTATTCTCCAACCGCAG
7 SWUC934 qLR09-2 C9 24.1 F:TTCACACTCCCGATCTCTCC
R:AGATTCCCTCCCCAACAAGT

Fig. 1

Characteristics of AC1-4 (resynthesized Brassica napus) with high resistance against Sclerotinia sclerotiorum A: Seedling of Brassica incana; B: Seedling of 6Y733 (Brassica rapa); C: Seedling of AC1-4; D: Seedling of 4Q292; E: Seedling of F1 (4Q292 × AC1-4); F: Chromosome of haploid (Brassica incana × 6Y733); G: Chromosome of AC1-4 (chromosome doubling); H: Pollen fertility identification of haploid (Brassica incana × 6Y733); I: Pollen fertility identification of AC1-4 (chromosome doubling); J: Resistance identification of leaves of Zhongshuang 9, 6Y733 and AC1-4 (from left to right); K: Resistance identification of branches of Zhongshuang 9, 6Y733 and AC1-4 (from left to right)"

Fig. 2

Verification of the relatives and F1 hybrid individual plants with SSR primer SWU260"

Table 2

Results from molecular marker analysis of F2:3 families"

编号
Code
家系大小(株)
Size of family
(plants)
含/不含QTL植株数
Amount of plants inherited/non-inherited QTL
同时含有C1和C9 QTL植株数/百分
Amount/percentage of plants inherited both QTL on C1 and C9
C1 C9
5X77 72 20/52 5/67 1/1.3
5X78 46 21/20 27/25 20/43.5
5X79 70 23/47 0/70 0/0.0
5X80 184 96/88 99/85 68/37.0
5X81 129 30/98 7/122 3/2.3
5X82 144 70/74 74/70 58/40.3
5X83 184 34/150 26/158 16/8.7
5X84 153 81/72 72/81 56/36.6
共计Total 982 - - 222/22.6

Fig. 3

The Sclerotinia resistance level of selected individuals in F2:3 families"

Table 3

Relative susceptibility and seed quality of some individuals in F2:3 generation"

序号
No.
编号
Code
相对感病度
Relative susceptibility
芥酸
Erucic acid (%)
硫苷
Glucosinolate (μmol·g-1 meal)
1 5X82-2 0.33±0.07 25.62±1.02 45.38±2.04
2 5X80-29 0.43±0.27 20.69±1.21 96.85±0.82
3 5X80-77 0.47±0.04 19.27±0.63 92.66±1.53
4 5X82-7 0.48±0.10 6.50±1.41 74.88±0.25
5 5X84-89 0.48±0.22 30.37±1.59 107.99±2.35
6 5X82-6 0.5±0.24 20.22±2.79 105.30±0.72
7 5X78-18 0.51±0.01 46.43±0.66 122.93±0.88
8 5X82-136 0.58±0.00 25.26±1.00 96.80±2.52
9 5X82-65 0.63±0.31 28.26±0.94 96.90±1.01
10 5X80-50 0.65±0.19 32.44±2.00 101.39±2.19
11 5X82-43 0.67±0.10 25.33±1.13 79.09±0.68
12 5X84-28 0.71±0.06 16.41±2.24 94.41±0.61
13 5X80-7 0.74±0.10 3.03±1.77 78.74±0.94
14 5X80-161 0.81±0.00 22.39±1.60 114.42±1.11
15 5X80-61 0.82±0.05 23.99±1.76 87.40±1.18
16 5X80-28 0.84±0.02 17.49±1.17 76.48±1.17
17 5X80-110 0.89±0.05 20.08±1.11 68.34±2.01
[1] OGURA H . Studies on the new male-sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Memoirs of the Faculty of Agriculture Kagoshima University, 1968,6:39-78.
[2] LI C X, LIU S Y, SIVASITHAMPARAM K, BARBETTI M J . New sources of resistance to sclerotinia stem rot caused by Sclerotinia sclerotiorumi n Chinese and Australian Brassica napus and B. juncea germplasm screened under Western Australian conditions. Australasian Plant Pathology, 2009,38:149-152.
[3] ZHAO J, PELTIER A J, MENG J L, OSBORN T C, GRAU C R . Evaluation of sclerotinia stem rot resistance in oilseed Brassica napus using a petiole inoculation technique under greenhouse conditions. Plant Disease, 2004,88:1033-1039.
[4] 陈玉卿, 张洁夫, 伍贻美, 侯庆树, 周益军, 韩红 . 芸薹属油菜种质资源抗(耐)菌核病、病毒病的鉴定. 中国油料作物学报, 1993,2:4-7.
CHEN Y Q, ZHANG J F, WU Y M, HOU Q S, ZHOU Y J, HAN H . Studies on virus and sclerotinia resistance of rapeseed germplasm in Brassica napus. Chinese Journal of Oil Crop Sciences, 1993,2:4-7. (in Chinese)
[5] 陈碧云, 伍晓明, 陆光远, 高桂珍, 许鲲 . 欧洲野生甘蓝资源的菌核病抗性鉴定与评价. 中国油料作物学报, 2008,10:393-396.
CHEN B Y, WU X M, LU G Y, GAO G Z, XU K . Identification and evaluation of disease resistance of European wild cabbage resources to Sclerotinia sclerotiorum. Chinese Journal of Oil Crop Sciences, 2008,10:393-396. (in Chinese)
[6] GARG H, ATRI C, SANDHU P S, KAUR B, RENTON M, BANGA S K, SINGH H, SING C, BARBETTI M J, BANGA S S . High level of resistance to Sclerotinia sclerotiorum in introgression lines derived from hybridization between wild crucifers and the crop Brassica species B. napus and B. juncea. Field Crops Research, 2010,117:51-58.
[7] MEI J Q, QIAN L W, DISI J O, YANG X R, LI Q F, LI J N, FRAUEN M, CAI D G, QIAN W . Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica, 2011,177:393-399.
[8] MEI J Q, LI Q F, YANG X R, QIAN L W, LIU L Z, YIN J M, FRAUEN M, LI J N, QIAN W . Genomic relationships between wild and cultivated Brassica oleracea L. with emphasis on the origination of cultivated crops. Genetic Resources and Crop Evolution, 2010,57:687-692.
[9] SNOGERUP S, GUSTAFSSON M, VON BOTHMER R . Brassica sect. Brassica (Brassicaceae) I: Taxonomy and variation. Willdenowia, 1990,19(2):271-365.
[10] SONG K, OSBORN T, WILLIAMS P . Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs):3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theoretical and Applied Genetics, 1990,79(4):497-506.
[11] MEI J Q, DING Y J, LU K, WEI D Y, LIU Y, DISI J O, LI J N, LIU L Z, LIU S Y, MCKAY J, QIAN W . Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. Theoretical and Applied Genetics, 2013,126:549-556.
[12] WEI L J, JIAN H J, LU K, FILARDO F, YIN N W, LIU L Z, QU C M, LI W, DU H, LI J N . Genome-wide association analysis and differential expression analysis of resistance to sclerotinia stem rot in Brassica napus. Plant Biotechnology Journal, 2016,14:1368-1380.
doi: 10.1111/pbi.12501
[13] ZHANG J, QI C, PU H, CHEN S, CHEN F . Genetic map construction and sclerotinia resistance QTLs identification in rapeseed (Brassica napus L.): Prague, Czech: Proceedings of 13th International Rapeseed Congress, 2011: 673-676.
[14] ZHAO J W, UDALL J A, QUIJADA P A, GRAU C R, MENG J L, OSBORN T C . Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theoretical and Applied Genetics, 2006,112:509-516.
doi: 10.1007/s00122-005-0154-5
[15] DING Y J, MEI J Q, LIU Y, WANG L, LI Y H, WAN H F, LI J N, QIAN W . Transfer of sclerotinia stem rot resistance from wild Brassica oleracea into B. rapa. Molecular Breeding, 2015,35:225.
[16] MEI J Q, LIU Y, WEI D Y, WITTKOP B, DING Y J, LI Q F, LI J N, WAN H F, LI Z Y, GE X H, FRAUEN M, SNOWDON R J, QIAN W, FRIEDT W . Transfer of sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Theoretical and Applied Genetics, 2015,128:639-644.
[17] DING Y J, MEI J Q, LI Q F, LIU Y, WAN H F, WANG L, BECKER H C, QIAN W . Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea. Genetic Resources and Crop Evolution, 2013,60:1615-1619.
[18] BANNEROT H, BOULIDARD L, CHUPEAU Y . Unexpected difficulties met with the radish cytoplasm in Brassica oleracea. Eucarpia Cruciferae Newsletter, 1977,2:16-18.
[19] PELLETIER G, PRIMARD C, VEDEL F, CHETRIT P, REMY R, ROUSSELLE M, RENARD M . Intergeneric cytoplasmic hybridization in cruciferae by protoplast fusion. Molecular and General Genetics, 1983,191(2):244-250.
[20] PRIMARD-BRISSET C, POUPARD J P, HORVAIS R, EBER F, PDLLETIER G, RENARD M, DELOURME R . A new recombined double low restorer line for the Ogu-INRA cms in rapeseed ( Brassica napus L.). Theoretical and Applied Genetics, 2005,111(4):736-746.
doi: 10.1007/s00122-005-2059-8
[21] 李旭锋, 李琳, 秦金红, 吴书惠, 袁旭, 王劲, 杨凡 . 油菜萝卜质不育系测交后代恢复材料F2(TC1)的选育及细胞遗传学研究. 中国农业科学, 2001,34(1):108-110.
LI X F, LI L, QIN J H, WU S H, YUAN X, WANG J, YANG F . Cytogenetic study on the restored material F2 (TC1) from test cross progenies of B. napus with OguCMS. Scientia Agricultura Sinica, 2001,34(1):108-110. (in Chinese)
[22] 陈卫江, 李莓, 王同华, 惠荣奎, 涂金星, 傅廷栋 . 甘蓝型油菜萝卜细胞质雄性不育恢复材料的创制. 中国农业科学, 2012,45(8):18-25.
CHEN W J, LI M, WANG T H, HUI R K, TU J X, FU T D . Creative process of a new restorer material with Ogu CMS in Brassica napus. Scientia Agricultura Sinica, 2012,5(8):18-25. (in Chinese)
[23] MEI J Q, WEI D Y, DISI J O, DING Y J, LIU Y, QIAN W . Screening resistance against Sclerotinia sclerotiorum in Brassica crops with use of detached stem assay under controlled environment. European Journal of Plant Pathology, 2012,134:599-604.
[24] WU J, LI F, XU K, GAO G, CHEN B, YAN G, WANG N, QIAO J, LI J, LI H, ZHANG T, SONG W, WU X . Assessing and broadening genetic diversity of a rapeseed germplasm collection. Breeding Science, 2014,64(4):321-330.
[25] 牛应泽, 汪良中, 刘玉贞, 郭世星 . 利用人工合成甘蓝型油菜创建油菜新种质. 中国油料作物学报, 2003,25(4):11-12.
NIU Y Z, WANG L Z, LIU Y Z, GUO S X . Development of new germplasm in rapeseed through resynthesis of new Brassica napus L. Chinese Journal of Oil Crop Sciences, 2003,25(4):11-12. (in Chinese)
[26] 富贵, 赵志刚, 杜德志 . 利用青海大黄油菜和芥蓝合成大粒甘蓝型油菜. 中国油料作物学报, 2012,34(2):136-141.
FU G, ZHAO Z G, DU D Z . Large seed resynthesized Brassica napus from hybrid of Brassica rapa and Brassica oleracea var. alboglabra. Chinese Journal of Oil Crop Sciences, 2012,34(2):136-141. (in Chinese)
[27] RAHMAN M H . Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breeding, 2001,120(6):463-472.
[28] CHEN B Y, HENEEN W K . Resynthesized Brassica napus L.: A review of its potential in breeding and genetic analysis. Hereditas, 1990,111(3):255-263.
[29] AKBAR M A . Resynthesis of Brassica napus aiming for improved earliness and carried out by different approaches. Hereditas, 1990,111(3):239-246.
[30] RYGULLA W, FRIEDT W, SEYIS F, LÜHS W, EYNCK C, VON TIEDEMANN A, SNOWDON R J . Combination of resistance to Verticillium longisporum from zero erucic acid Brassica oleracea and oilseed Brassica rapa genotypes in resynthesized rapeseed (Brassica napus) lines. Plant Breeding, 2007,126(6):596-602.
[31] DIEDERICHSEN E, SACRISTAN M D . Disease response of resynthesized Brassica napus L. lines carrying different combinations of resistance to Plasmodiophora brassicae Wor. Plant Breeding, 2010,115(1):5-10.
doi: 10.1111/pbr.1996.115.issue-1
[32] SZAŁA L, SOSNOWSKA K, POPŁAWSKA W, LIERSCH A, OLEJNIK A, KOZŁOWSKA K, BOCIANOWSKI J, CEGIELSKA- TARAS T . Development of new restorer lines for CMS ogura system with the use of resynthesized oilseed rape ( Brassica napus L.). Breeding Science, 2016,66(4):516-521.
[33] YOU M P, ULOTH M B, LI X X, BANGA S S, BANGA S K, BARBETTI M J . Valuable new resistances ensure improved management of sclerotinia stem rot ( Sclerotinia sclerotiorum) in horticultural and oilseed Brassica species. Journal of Phytopathology, 2016,164(5):291-299.
[34] AHMAD H, HASNAIN S, KHAN A . Evolution of genomes and genome relationship among the rapeseed and mustard. Biotechnology, 2002,1:78-87.
[35] TIAN E T, JIANG Y F, CHEN L L, ZOU J, LIU F, MENG J L . Synthesis of a Brassica trigenomic allohexaploid (B. carinata×B. rapa) de novo and its stability in subsequent generations. Theoretical and Applied Genetics, 2010,121(8):1431-1440.
doi: 10.1007/s00122-010-1399-1
[36] CHOUDHARY B R, JOSHI P, SINGH K . Synthesis, morphology and cytogenetics of Raphanofortii (TTRR, 2n=38): A new amphidiploid of hybrid Brassica tournefortii (TT, 2n = 20) ×Raphanus caudatus (RR, 2n=18). Theoretical and Applied Genetics, 2000,101(5/6):990-999.
[37] CHRUNGU B, VERMA N, MOHANTY A, PRADHAN A, SHIVANNA K R . Production and characterization of interspecific hybrids between Brassica maurorum and crop brassicas. Theoretical and Applied Genetics, 1999,98(3/4):608-613.
[38] QIAN W, CHEN X, FU D H, ZOU J, MENG J L . Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theoretical and Applied Genetics, 2005,110(7):1187-1194.
doi: 10.1007/s00122-005-1932-9
[39] TEL-ZUR N, ABBO S, MIZRAHI Y . Cytogenetics of semi-fertile triploid and aneuploid intergeneric vine cacti hybrids. Journal of Heredity, 2005,96(2):124-131.
[40] WU J, CAI G Q, TU J Y, LI L X, LIU S, LUO X P, ZHOU L P, FAN C H, ZHOU Y M . Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS ONE, 2013,8(7):e67740.
doi: 10.1371/journal.pone.0067740
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[3] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[4] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[5] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[6] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[7] ZHANG HuanHuan,CUI GuiMei,WANG ChangBiao,WANG XiaoQing,HAO YaoShan,DU JianZhong,WANG YiXue,SUN Yi. Breeding and Characteristics of a New Male Sterile Line of Maize, Jinyu1A [J]. Scientia Agricultura Sinica, 2020, 53(21): 4322-4332.
[8] WAN HuaFang,WEI Shuai,FENG YuXia,QIAN Wei. Creating a New-Type Brassica napus (AnArCnCo) with High Drought-resistance Employing Hexaploid (AnAnCnCnCoCo) as a Bridge [J]. Scientia Agricultura Sinica, 2020, 53(16): 3225-3234.
[9] YANG GuangSheng,XIN Qiang,DONG FaMing,HONG DengFeng. A Simplified Production Method of Hybrid F1 Seeds in Rapeseed [J]. Scientia Agricultura Sinica, 2019, 52(8): 1334-1340.
[10] YE Sang,CUI Cui,GAO HuanHuan,LEI Wei,WANG LiuYan,WANG RuiLi,CHEN LiuYi,QU CunMin,TANG ZhangLin,LI JiaNa,ZHOU QingYuan. QTL Identification for Fatty Acid Content in Brassica napus Using the High Density SNP Genetic Map [J]. Scientia Agricultura Sinica, 2019, 52(21): 3733-3747.
[11] PU YuanYuan,ZHAO YuHong,WU JunYan,LIU LiJun,BAI Jing,MA Li,NIU ZaoXia,JIN JiaoJiao,FANG Yan,LI XueCai,SUN WanCang. Comprehensive Assessment on Cold Tolerance of the Strong Winter Brassica napus L. Cultivated in Northern China [J]. Scientia Agricultura Sinica, 2019, 52(19): 3291-3308.
[12] SONG Xi, PU DingFu, TIAN LuShen, YU QingQing, YANG YuHeng, Dai BingBing, ZHAO ChangBin, HUANG ChengYun, DENG WuMing. Genetic Analysis and Characterization of Hormone Response of Semi-Dwarf Mutant dw-1 in Brasscia napus L. [J]. Scientia Agricultura Sinica, 2019, 52(10): 1667-1677.
[13] LIU Fang,XIAO Gang,GUAN ChunYun. Regulation of GT and GATA Transcription Factors on Promoter Function of BnA5.FAD2 and BnC5.FAD2 Genes in Brassica napus [J]. Scientia Agricultura Sinica, 2018, 51(24): 4603-4614.
[14] WEI DaYong, TAN ChuanDong, CUI YiXin, WU DaoMing, LI JiaNa, MEI JiaQin, QIANWei. Genome-Wide Association Study of the Fertility Restorer Loci for pol CMS in Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2017, 50(5): 802-810.
[15] LIN Jian-rong, SONG Xin-wei, WU Ming-guo, CHENG Shi-hua. Breeding Technology innovation of Indica-Japonica Super Hybrid Rice and Varietal Breeding [J]. Scientia Agricultura Sinica, 2016, 49(2): 207-218.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!