Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (24): 4603-4614.doi: 10.3864/j.issn.0578-1752.2018.24.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Regulation of GT and GATA Transcription Factors on Promoter Function of BnA5.FAD2 and BnC5.FAD2 Genes in Brassica napus

LIU Fang1(),XIAO Gang2,GUAN ChunYun1()   

  1. 1 College of Agriculture, Hunan Agricultural University/National Oilseed Crops Improvement Center in Hunan, Changsha 410128
    2 Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128
  • Received:2018-07-13 Accepted:2018-09-25 Online:2018-12-16 Published:2018-12-16

Abstract:

【Objective】 Fatty acid desaturase 2 gene (FAD2) is an important gene for controlling oleic acid content in rapeseed. And in this paper, the interaction between GATA family and BnA5.FAD2 and BnC5.FAD2 gene promoters or GT family transcription factors and BnA5.FAD2 and BnC5.FAD2 gene promoters was studied to make sure the transcription regulation mechanism to provide the theoretical basis for high oleic acid breeding. 【Method】 The potential cis-elements were predicted by deletion of promoter fragments and bioinformatics analysis, and candidate transcription factors were screened from PlantTFDB transcription factor database. Real-time PCR (qRT-PCR) was used to detect the expression pattern of transcription factors to further screen candidate transcription factors by comparison with BnA5.FAD2 and BnC5.FAD2 gene expression patterns. Transcription factors were co-transformed with BnA5.FAD2 and BnC5.FAD2 gene promoters into yeast and verified interaction relationship between promoter and transcription factors by yeast one-hybrid. The transcription factors were transformed into Arabidopsis thaliana with BnA5.FAD2 and BnC5.FAD2 gene promoter sequence, and the reporter gene GFP was detected by western blot to analyze the effects of transcription factors on promoters. 【Result】 After knocking out the GT or GATA cis-elements from BnA5.FAD2 and BnC5.FAD2 gene promoters respectively, the GFP protein abundance decreased, which indicate that GT and GATA cis-elements play important roles in regulating gene transcription. Yeast one-hybrid results showed that the GATA family transcription factors (Bna010243-1, Bna026124-1, Bna026124-2) and the GT family transcription factors (Bna010915 and Bna013749) can interact with BnA5.FAD2 and BnC5.FAD2 gene promoters. Western blot analysis showed that when the GATA family transcription factor and the promoter fragment containing GATA elements were co-transformed into Arabidopsis thaliana, the GFP protein content was significantly higher than that of no transcription factor. When the GATA element was knocked out, the GFP protein content did not change significantly. When the GT family transcription factor and the promoter fragment containing the GT element were co-transformed into Arabidopsis thaliana, the GFP protein content changed significantly. When the GT element was knocked out, the GFP protein content did not change significantly.【Conclusion】 The GATA family transcription factors Bna010243-1, Bna026124-1, Bna026124-2 can interact with the GATA elements in the BnA5.FAD2 and BnC5.FAD2 gene promoters to enhance gene expression levels. The GT family transcription factor Bna010915 interacts with the GT elements in the BnA5.FAD2 and BnC5.FAD2 gene promoters to positively regulate gene expression; Bna013749 interacts with the GT elements in the BnA5.FAD2 and BnC5.FAD2 gene promoters to negatively regulate gene expression.

Key words: Brassica napus, GATA transcription factor, GT transcription factor, BnA5.FAD2 promoter, BnC5.FAD2 promoter

Fig. 1

Functional analysis of BnFAD2-A5 and BnFAD2-C5 promoters in different regions"

Fig. 2

Identification analysis by knocking out the GT or GATA cis-element in promoter BnA5.FAD2 and BnC5.FAD2"

Fig. 3

Expression analysis of GATA family and GT family"

Fig. 4

Protein sequence analysis of GATA and GT family"

Fig. 5

Analysis of the interaction between transcription factors and promoter BnFAD2-A5 or BnFAD2-C5 using yeast one-hybrid method"

Fig. 6

The interaction analysis of transcription factor and promoters in Arabidopsis thaliana"

[1] YANG Y Y, YANG S Q, CHEN Z H, GUAN C Y, CHEN S Y, LIU Z S . QTL analysis of 18-C unsaturated fatty acid contents in zero-erucic rapeseed (Brassica napus L.). Acta Agronomica Sinica, 2011,37(8):1342-1350.
doi: 10.3724/SP.J.1006.2011.01342
[2] NABLOUSSI A , FERNÁNDEZMARTÍNEZ J M, VELASCO L. Inheritance of mid and high oleic acid content in Ethiopian mustard. Crop Science, 2006,46(6):2361-2367.
[3] CHAPMAN K D, DYER J M, MULLEN R T . Biogenesis and functions of lipid droplets in plants: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: from Yeast to Man. Journal of Lipid Research, 2012,53(2):215-226.
doi: 10.1194/jlr.R021436 pmid: 22045929
[4] KARGIOTIDOU, A, DELI D, GALANOPOULOU D, TSAFTARIS A, FARMAKI T . Low temperature and light regulate delta 12 fatty acid desaturase (FAD2) at a transcriptional level in cotton(Gossypium hirsutum).Journal of Experimental Botany, 2008,59(8):2043-2056.
doi: 10.1093/jxb/ern065 pmid: 2413273
[5] MARTIN C E, OH C, JIANG Y . Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochimica et Biophysica Acta, 2007,1771(3):271-285.
doi: 10.1016/j.bbalip.2006.06.010 pmid: 16920014
[6] 吴秀丽, 李扬秋 . 造血转录因子GATA-3的研究进展. 国外医学输血及血液学分册. 2001,24(5):387-390.
WU X L, LI Y Q . Research progress of hematopoietic transcription factor GATA-3. Foreign Medical Blood Transfusion and Hematology, 2001,24(5):387-390. (in Chinese)
[7] 袁岐, 张春利, 赵婷婷, 许向阳 . 植物中GATA转录因子的研究进展. 分子植物育种, 2017(5):1702-1707.
YUAN Q, ZHANG C L, ZHAO T T, XU X Y . Research of advances GATA transcription factor in plant.Molecular Plant Breeding, 2017(5):1702-1707. (in Chinese)
[8] RASTOGI R, BATE N J, SIVASANKAR S, ROTHSTEIN S J . Footprinting of the spinach nitrite reductase gene promoter reveals the preservation of nitrate regulatory elements between fungi and higher plants. Plant Molecular Biology, 1997,34(3):465-476.
[9] GREEN P J, KAY S A, CHUA N H . Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. The EMBO Journal, 1987,6(9):2543-2549.
doi: 10.1002/j.1460-2075.1987.tb02542.x pmid: 3678200
[10] MCCARTY D R, CHORY J . Conservation and innovation in plant signaling pathways. Cell, 2000,103(2):201-209.
doi: 10.1016/S0092-8674(00)00113-6 pmid: 11057894
[11] VILLAIN P, CLABAULT G, MACHE R, ZHOU D X . S1F binding site is related to but different from the light-responsive GT-1 binding site and differentially represses the spinach rps1 promoter in transgenic tobacco. The Journal of Biological Chemistry, 1994,269(24):16626-16630.
doi: 10.1016/0165-3806(94)90139-2 pmid: 8206981
[12] DEHESH K, SMITH L G, TEPPERMAN J M, QUAIL P H . Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2. The Plant Journal, 1995,8(1):25-36.
doi: 10.1046/j.1365-313X.1995.08010025.x pmid: 7655505
[13] DEHESH K, HUNG H, TEPPERMAN J M, QUAIL P H . GT-2: A transcription factor with twin autonomous DNA-binding domains of closely related but different target sequence specificity. The EMBO Journal, 1992,11(11):4131-4144.
doi: 10.1016/0014-4827(92)90166-6
[14] SUPRUNOVA T, KRUGMAN T, DISTELFELD A, FAHIMA T, NEVO E, KOROL A . Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Molecular Biology, 2007,64(1/2):17-34.
doi: 10.1007/s11103-006-9131-x pmid: 17238046
[15] MEHROTRA R, KIRAN K, CHATURVEDI C P, ANSARI S A, LODHI N, SAWANT S, TULI R . Effect of copy number and spacing of the ACGT and GT cis elements on transient expression of minimal promoter in plants. Journal of Genetics, 2005,84(2):183-187.
doi: 10.1007/BF02715844 pmid: 16131718
[16] GUAN Q L, CHEN H X, ZHANG Y, LI Q L . Progresses on GT elements and GT factors in plants. Hereditas, 2009,31(2):123-130.
doi: 10.3724/SP.J.1005.2009.00123 pmid: 19273418
[17] LE GOURRIEREC J, LI Y F, ZHOU D X . Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFIIA-TBP- TATA complex. The Plant Journal, 1999,18(6):663-668.
doi: 10.1046/j.1365-313x.1999.00482.x pmid: 2020202020120202020202020
[18] AN G . Binary ti vectors for plant transformation and promoter analysis. Methods in Enzymology, 1987,153(153C):292-305.
doi: 10.1016/0076-6879(87)53060-9
[19] CLOUGH S J, BENT A F . Floral dip: A simplified method for Agrobaacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998,16:735-743.
[20] 刘睿洋, 刘芳, 张振乾, 官春云 . 甘蓝型油菜BnFAD2-C5基因启动子及内含子在表达水平的功能分析. 作物学报, 2016,42(10):1471-1478.
LIU R Y, LIU F, ZHANG Z Q, GUAN C Y . Functional analysis of BnFAD2-C5 promoter and intron at expression level in Brassica napus. Acta Agronomica Sinica, 2016,42(10):1471-1478. (in Chinese)
[21] XIAO G, ZHANG Z Q, YIN C F, LIU R Y, WU X M, TAN T L, GUAN C Y . Characterization of the promoter and 5´UTR intron of oleic acid desaturase (FAD2) gene in Brassica napus. Gene, 2014,545:45-55.
doi: 10.1016/j.gene.2014.05.008 pmid: 24811682
[22] LIU F, WANG G L, LIU R Y, GUAN C Y . The promoter of fatty acid desaturase on chromosome C5 in Brassica napus, drives high-level expression in seeds. Plant Biotechnology Reports, 2016,10(6):369-381.
[23] KAPLAN-LEVY R N, BREWER P B, QUON T, DAVID R S . The trihelix family of transcription factors--light, stress and development. Trends in Plant Science, 2012,17(3):163-171.
doi: 10.1016/j.tplants.2011.12.002 pmid: 22236699
[24] FAN S D, WANG Y . Cloning and activity analysis of promoter of GRAS transcription factor gene HcSCL13 from Halostachys caspica. Biotechnology Bulletin, 2017,33:131-138.
[25] NI M, DEHESH K, TEPPERMAN J M, QUAIL P H . GT-2:In vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity. The Plant Cell, 1996,8(6):1041-1059.
doi: 10.2307/3870214 pmid: 8672890
[26] MCCARTY D R, CHORY J . Conservation and innovation in plant signaling pathways. Cell, 2000,103(2):201-209.
doi: 10.1016/S0092-8674(00)00113-6 pmid: 11057894
[27] 丁刘军, 普明宇, 卫波, 王献平, 范仁春, 张相岐 . 转录因子基因TuGTY-3参与乌拉尔图小麦对条锈病的抗性. 遗传, 2016,38(12):1090-1101.
DING L J, PU M Y, WEI B, WANG X P, FAN R C, ZHANG X Q . Transcription factor gene TuGTY-3 is involved in the stripe rust resistance in Triticum urartu . Hereditas, 2016,38(12):1090-1101. (in Chinese)
[28] KAPLANLEVY R N, BREWER P B, QUON T . The trihelix family of transcription factors-light, stress and development. Trends in Plant Science, 2012,17:163-171.
doi: 10.1016/j.tplants.2011.12.002 pmid: 22236699
[29] GAO M J, LI X, LUI H, GORDON M G, DEREK D L, SHU W, DWAYNE D H . ASIL1 is required for proper timing of seed filling in Arabidopsis. Plant Signaling & Behavior, 2011,6(12):1886-1888.
doi: 10.4161/psb.6.12.18709 pmid: 3337171
[30] LOWRY J A, ATCHLEY W R . Molecular evolution of the GATA family of transcription factors: Conservation within the DNA-binding domain. Journal of Molecular Evolution, 2000,50(2):103-115.
doi: 10.1007/s002399910012 pmid: 10684344
[31] 剧建芳 . 南极丝瓜藓GATA转录因子PnGATA1的功能研究[D]. 济南: 山东大学, 2014.
JU J F . Functional study of GATA transcription factor PnGATA1 in Antarctic[D]. Jinan: Shandong University, 2014. ( in Chinese)
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[3] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[4] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[5] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[6] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[7] WAN HuaFang,WEI Shuai,FENG YuXia,QIAN Wei. Creating a New-Type Brassica napus (AnArCnCo) with High Drought-resistance Employing Hexaploid (AnAnCnCnCoCo) as a Bridge [J]. Scientia Agricultura Sinica, 2020, 53(16): 3225-3234.
[8] WAN HuaFang,DING YiJuan,CHEN ZhiFu,MEI JiaQin,QIAN Wei. Improvement of the Resistance Against Sclerotinia sclerotiorum in Ogu CMS Restorer in Brassica napus Using Wild B. oleracea as Donor [J]. Scientia Agricultura Sinica, 2020, 53(10): 1950-1958.
[9] YANG GuangSheng,XIN Qiang,DONG FaMing,HONG DengFeng. A Simplified Production Method of Hybrid F1 Seeds in Rapeseed [J]. Scientia Agricultura Sinica, 2019, 52(8): 1334-1340.
[10] YE Sang,CUI Cui,GAO HuanHuan,LEI Wei,WANG LiuYan,WANG RuiLi,CHEN LiuYi,QU CunMin,TANG ZhangLin,LI JiaNa,ZHOU QingYuan. QTL Identification for Fatty Acid Content in Brassica napus Using the High Density SNP Genetic Map [J]. Scientia Agricultura Sinica, 2019, 52(21): 3733-3747.
[11] PU YuanYuan,ZHAO YuHong,WU JunYan,LIU LiJun,BAI Jing,MA Li,NIU ZaoXia,JIN JiaoJiao,FANG Yan,LI XueCai,SUN WanCang. Comprehensive Assessment on Cold Tolerance of the Strong Winter Brassica napus L. Cultivated in Northern China [J]. Scientia Agricultura Sinica, 2019, 52(19): 3291-3308.
[12] SONG Xi, PU DingFu, TIAN LuShen, YU QingQing, YANG YuHeng, Dai BingBing, ZHAO ChangBin, HUANG ChengYun, DENG WuMing. Genetic Analysis and Characterization of Hormone Response of Semi-Dwarf Mutant dw-1 in Brasscia napus L. [J]. Scientia Agricultura Sinica, 2019, 52(10): 1667-1677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!