Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (24): 4484-4492.doi: 10.3864/j.issn.0578-1752.2019.24.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Soaking Seeds with Lanthanum Nitrate on Seed Germination and Seedling Growth of Quinoa Under Salt Stress

ChunHua PANG1,2,Yuan ZHANG1,YaNi LI1   

  1. 1 Shool of Life Science, Shanxi Normal University, Linfen 041004, Shanxi
    2 Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Linfen 041004, Shanxi
  • Received:2019-04-09 Accepted:2019-06-24 Online:2019-12-16 Published:2020-01-15

Abstract:

【Objective】 With the formation of soil salinization, not only causes the resource-wasting, but also restricts the agricultural production. Quinoa has salt-tolerant properties, It can alleviate salt stress. China is the country with the most rare earth content. There is a study that lanthanum may alleviate the effects of salt stress on plants. In this study, quinoa was treated with salt stress, which seed had been soaked with lanthanum nitrate before. The effects of soaking seeds with lanthanum nitrate on seed germination and seedling growth of quinoa under salt stress were examined to find a way to improve salt resistance of the species. 【Method】 In this study, quinoa was used as the research material and greenhouse potted planting method was adopted in order to study the effects of different lanthanum nitrate leaching species (25, 50, 100 mg·L -1) on seed germination and seedling growth under different salt stresses (100, 200, 300 mmol·L -1 sodium chloride solution). 【Result】(1) When lanthanum nitrate was 50 mg·L -1, the effect of quinoa seeds were the optimal, the germination percentage, germination potential, and germination index of quinoa seeds were the highest, and there were significant differences compared with other concentrations. (2) At the same socking concentration, plant height and root length of seedlings decreased with the increase of salt concentrations within 300 mmol·L -1 NaCl, while peroxidase (POD), superoxide dismutase (SOD), malondialdehyde (MDA), soluble sugar, proline and other physiological and biochemical indexes increased with the increase of salt concentrations. (3) At the same salt concentration, plant height, root length and other growth indicators of quinoa seedlings showed the tendency of first increasing and then decreasing with the increase of soaking concentrations, as well as POD, SOD, soluble sugar, soluble protein, proline and other physiological and biochemical indexes. For MDA, the trends were reversed. (4) Quinoa seedlings survived and grown in the NaCl solutions less than 300 mmol·L -1, but optimal concentration was 300 mmol·L -1. At the same time 300 mmol·L -1 salt concentration, the growth index were the best when lanthanum nitrate was 50 mg·L -1.【Conclusion】 Under salt stress, quinoa seeds socked in low concentration solution of lanthanum nitrate could promote the seed germination and the shoot growth, strengthen the antioxidant enzyme activities of seedlings, and improve the content of the osmotic adjustment material, resulting in increasing resistance to salt stress. However, seedling growth was inhabited by high concentration solution of lanthanum nitrate. This study suggested that the resistance of quinoa to salt stress was enhanced by adding adequate lanthanum nitrate.

Key words: quinoa, seed germination, seedling, lanthanum nitrate, salt stress

Table 1

Effects of different lanthanum nitrate treatment on seed germination of quinoa"

处理Treatment 发芽率Germination energy (%) 发芽势Germination rate (%) 发芽指数Germination index
T0 0.84±0.043c 0.825±0.042b 34.708±2.133b
T1 0.898±0.036ab 0.883±0.036a 40.833±1.072a
T2 0.908±0.028a 0.888±0.028a 39.979±1.855a
T3 0.86±0.043bc 0.845±0.037b 35.646±1.242b

Table 2

Effect of lanthanum nitrate soaking on the growth of quinoa seedlings under salt stress"

硝酸镧处理
Lanthanum treatment
氯化钠浓度
NaCl treatment (mmol·L-1)
株高
Plant height (cm)
根长
Root length (cm)
苗长
Seedling length (cm)
T0 N0 19.72±0.31Ab 6.88±0.24Ca 26.6±0.53Ab
N1 17.62±0.20Bb 8.64±0.30Ba 26.26±0.48Ab
N2 14.36±0.30Cb 10.42±0.38Aa 24.78±0.66Ab
N3 11.1±0.22Db 6.26±0.21Ca 17.36±0.22Bb
T1 N0 21.48±0.30Aa 5.74±0.27Cb 27.22±0.38Ab
N1 19.94±0.36Ba 7.02±0.20Bb 26.96±0.46Ab
N2 18.14±0.21Ca 9.34±0.20Ab 27.48±0.20Ab
N3 14.86±0.31Da 5.78±0.17Cb 20.64±0.42Bb
T2 N0 22.94±0.31Aa 7.6±0.26Ca 30.54±0.43Aa
N1 21.22±0.38Ba 8.9±0.21Ba 30.12±0.42Aa
N2 19.34±0.23Ca 10.98±0.38Aa 30.32±0.50Aa
N3 17.68±0.29Da 6.94±0.31Ca 24.62±0.42Ba
T3 N0 18.74±0.24Ab 4.86±0.30Cc 23.6±0.43Ac
N1 14.7±0.17Bb 6.56±0.22Bc 21.26±0.35Ac
N2 11.44±0.25Cb 7.64±0.30Ac 19.08±0.45Ac
N3 10.68±0.10Db 4.64±0.24Cc 15.32±0.30Bc

Fig. 1

Effects of lanthanum nitrate soaking on antioxidant enzymes in quinoa seedlings under salt stress"

Fig. 2

Effect of lanthanum nitrate soaking on MDA in quinoa seedlings under salt stress"

Fig. 3

Effect of lanthanum nitrate soaking on osmotic regulation in quinoa seedlings under salt stress"

[1] 张蕊, 邓文亚, 杨柳, 王亚萍, 肖芳枝, 禾健, 卢坤 . 盐胁迫下甘蓝型油菜发芽期下胚轴和根长的全基因组关联分析. 中国农业科学, 2017,50(1):15-35.
ZHANG R, DENG W Y, YANG L, WANG Y P, XIAO F Z, HE J, LU K . Genome-wide association study of root length and hypocotyl length at germination stage under saline conditions in Brassica napus. Scientia Agricultura Sinica, 2017,50(1):15-35. (in Chinese)
[2] 李永裕, 潘腾飞, 邱栋梁 . 稀土元素对植物生物学作用机制的研究进展. 中国农学通报, 2005,21(12):217-221.
LI Y Y, PAN T F, QIU D L . Advances of studies on the biological mechanism of rare earth elements in plants. Chinese Agricultural Science Bulletin, 2005,21(12):217-221. (in Chinese)
[3] 邱琳, 周青 . 稀土对种子萌发影响的研究进展. 中国生态农业学报, 2008,16(2):529-533.
QIU L, ZHOU Q . Review on the effects of rare earth elements on seed germination. Chinese Journal of Eco-Agriculture, 2008,16(2):529-533. (in Chinese)
[4] 郜红建, 常江, 张自立, 丁士明, 魏俊岭 . 稀土在植物抗逆中的生理作用. 中国稀土学报, 2003,21(5):487-490.
GAO H J, CHANG J, ZHANG Z L, DING S M, WEI J L . Physiological effects of rare earth elements on stress resistance in plant. Journal of the Chinese Rare Earth Society, 2003,21(5):487-490. (in Chinese)
[5] KNIGHT M R . Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiology, 2004,135(3):1471-1479.
[6] 高永生, 陈集双 . 盐胁迫下镧对小麦幼苗叶片抗氧化系统活性的影响. 中国稀土学报, 2005,23(4):490-495.
GAO Y S, CHEN J S . Effects of La 3+ on antioxidant system in wheat seedling leaves under salt stress . Journal of the Chinese Rare Earth Society, 2005,23(4):490-495. (in Chinese)
[7] 张杰, 刘登义, 黄永杰, 刘雪云 . 镧浸种对水稻种子萌发及幼苗生长的影响. 生态学杂志, 2005,24(8):893-896.
ZHANG J, LIU D Y, HUANG Y J, LIU X Y . Effects of seed soaking with La 3+ on seed germination and seedling growth of rice . Chinese Journal of Ecology, 2005,24(8):893-896. (in Chinese)
[8] 刘凤兰, 张永清, 贾蕊, 任晓丽 . La(NO3)3浸种对NaCl胁迫下红小豆幼苗生长的影响. 武汉植物学研究, 2009,27(4):397-402.
LIU F L, ZHANG Y Q, JIA R, REN X L . Effect of seed soaking with La(NO3)3 on root and seedling growth of adzuki bean under different concentrations NaCl stresses. Journal of Wuhan Botanical Research, 2009,27(4):397-402. (in Chinese)
[9] 袁俊杰, 蒋玉蓉, 吕柯兰, 陆国权, 毛前 . 不同盐胁迫对藜麦种子发芽和幼苗生长的影响. 种子, 2015,34(8):9-13.
YUAN J J, JIANG Y R, LÜ K L, LU G Q, MAO Q . Effects of different salt stress on quinoa seed vigor and seedling physiological. Seed, 2015,34(8):9-13. (in Chinese)
[10] 张紫薇, 庞春花, 张永清, 倪瑞军, 杨世芳, 王璐瑗, 刘丽琴 .等渗NaCl和PEG胁迫及复水处理对藜麦种子萌发及幼苗生长的影响. 作物杂志, 2017(1):119-126.
ZHANG Z W, PANG C H, ZHANG Y Q, NI R J, YANG S F, WANG L Y, LIU L Q .Effects of iso-osmotic NaCl and PEG stress and rewatering on seed germination and seedling growth of quinoa.Crops, 2017(1):119-126. (in Chinese)
[11] 刘文瑜, 杨发荣, 黄杰, 魏玉明, 金茜 . NaCl胁迫对藜麦幼苗生长和抗氧化酶活性的影响. 西北植物学报, 2017,37(9):1797-1804.
LIU W Y, YANG F R, HUANG J, WEI Y M, JIN Q . Response of seedling growth and the activities of antioxidant enzymes of chenopodium quinoato salt stress. Acta Botanica Boreali-Occidentalia Sinica, 2017,37(9):1797-1804. (in Chinese)
[12] 常乐钦, 梁卫卫, 杨培志 . 硝酸镧对柳枝稷种子萌发及幼苗生长的影响. 种子, 2014,33(11):22-26.
CHANG L Q, LIANG W W, YANG P Z . Effects of La(NO3)3 on seed germination and seedlings physiological characteristics of switchgrass. Seed, 2014,33(11):22-26. (in Chinese)
[13] 何学青, 梁卫卫, 常乐钦, 何树斌, 呼天明 . 硝酸镧浸种对NaCl胁迫下柳枝稷种子萌发及幼苗生理特性的影响. 西北植物学报, 2014,34(3):543-549.
HE X Q, LIANG W W, CHANG L Q, HE S B, HU T M . Effect of lanthanum nitrate on seed germination and seedling growth characteristics of switchgrass under NaCl stress. Acta Botanica Boreali-Occidentalia Sinica, 2014,34(3):543-549. (in Chinese)
[14] 刘建新, 王瑞娟, 王鑫 . 镧对NaCl胁迫下黑麦草幼苗根系生理特性的影响. 中国草地学报, 2010,32(6):46-51.
LIU J X, WANG R J, WANG X . Effects of lanthanum on physiological characteristics in ryegrass seedlings roots under NaCl stress. Chinese Journal of Grassland, 2010,32(6):46-51. (in Chinese)
[15] 任贵兴, 杨修仕, 么杨 .中国藜麦产业现状. 作物杂志, 2015(5):1-5.
REN G X, YANG X S, ME Y .Current situation of quinoa industry in China.Crops, 2015(5):1-5. (in Chinese)
[16] ANTONIO V G, MARGARITA M, JUDITH V, ELSA U, LUIS P, ENRIQUE A M . Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 2010,90(15):2541-2547.
[17] 古丽内尔·亚森, 杨瑞瑞, 曾幼玲 . 混合盐碱胁迫对灰绿藜(Chenopodium glaucum L.)种子萌发的影响. 生态学杂志, 2014,33(1):76-82.
GULINEIER Y S, YANG R R, ZENG Y L . Effects of salt-alkali mixed stresses on seed germination of the halophyte Chenopodium glaucum L. Chinese Journal of Ecology, 2014,33(1):76-82. (in Chinese)
[18] 杨宏伟, 刘文瑜, 沈宝云, 李朝周 . NaCl胁迫对藜麦种子萌发和幼苗生理特性的影响. 草业学报, 2017,26(8):146-153.
YANG H W, LIU W Y, SHEN B Y, LI Z Z . Seed germination and physiological characteristics of chenopodium quinoa under salt stress. Acta Prataculturae Sinica, 2017,26(8):146-153. (in Chinese)
[19] 张志良, 翟伟菁, 李小芳 . 植物生理学实验指导 (第4版). 北京:高等教育出版社, 2009: 30-227.
ZHANG Z L, ZHAI W J, LI X F. Experimental Director of Plant Physiology(4th edition). Beijing: Higher Education Press, 2009: 30-227. (in Chinese)
[20] SHEN J B, YUAN L X, ZHANG J L, LI H G, BAI Z H, CHEN X P, ZHANG W F, ZHANG F S . Phosphorus dynamics: From soil to plant. Plant Physiology, 2011,156(3):997-1005.
[21] HE Y Q, YANG B, HE Y, ZHAN C F, CHENG Y H, ZHANG J H, ZHANG H S, CHENG J P, WANG Z F . A quantitative trait locus, qSE 3, promotes seed germination and seedling establishment under salinity stress in rice. The Plant Journal, 2019,97(6):1089-1104.
[22] 洪法水, 魏正贵, 赵贵文 . 硝酸镧对水稻老化种子活力影响的作用机制. 中国稀土学报, 2001,19(1):75-79.
HONG F S, WEI Z G, ZHAO G W . Mechanism of lanthanum nitrate on aged seed vigor of rice. Journal of the Chinese Rare Earth Society, 2001,19(1):75-79. (in Chinese)
[23] RAZZAGHI F, AHMADI S H, JACOBSEN S E, JENSEN C R, ANDERSEN M N . Effects of salinity and soil-drying on radiation use efficiency, water productivity and yield of quinoa (Chenopodium quinoa willd.). Journal of Agronomy and Crop Science, 2012,198(3):173-184.
[24] 彭云玲, 保杰, 叶龙山, 王永健, 燕利斌 . NaCl胁迫对不同耐盐性玉米自交系萌动种子和幼苗离子稳态的影响. 生态学报, 2014,34(24):7320-7328.
PENG Y L, BAO J, YE L S, WANG Y J, YAN L B . Ion homeostasis in germinating seeds and seedlings of three maize inbred lines under salt stress. Acta Ecologica Sinica, 2014,34(24):7320-7328. (in Chinese)
[25] 常青山, 张利霞, 杨伟, 周姗姗, 黄青哲, 吕凤娟, 黄玥, 葛淑慧, 张天蒙 . 外源NO对NaCl胁迫下夏枯草幼苗抗氧化能力及光合特性的影响. 草业学报, 2016,25(7):121-130.
CHANG Q S, ZHANG L X, YANG W, ZHOU S S, HUANG Q Z, LÜ F J, HUANG Y, GE S H, ZHANG T M . Effects of exogenous nitric oxide on antioxidant activity and photosynthetic characteristics of Prunella vulgaris seedlings under NaCl stress. Acta Prataculturae Sinica, 2016,25(7):121-130. (in Chinese)
[26] 范鑫, 赵雷霖, 翟红红, 王远, 孟志刚, 梁成真, 张锐, 郭三堆, 孙国清 . AtNEK6在棉花旱盐胁迫响应中的功能分析. 中国农业科学, 2018,51(22):4230-4240.
FAN X, ZHAO L L, ZHAI H H, WANG Y, MENG Z G, LIANG C Z, ZHANG R, GUO S D, SUN G Q . Functional characterization of AtNEK6 overexpression in cotton under drought and salt stress. Scientia Agricultura Sinica, 2018,51(22):4230-4240. (in Chinese)
[27] WANG C R, WANG Q Y, TIAN Y, ZHANG J F, LI Z X, CAO P, ZHU M, LI T T . Lanthanum ions intervened in enzymatic production and elimination of reactive oxygen species in leaves of rice seedlings under cadmium stress. Environmental Toxicology and Chemistry, 2014,33(7):1656-1664.
[28] 刘庆, 董元杰, 刘双, 张东 . 外源水杨酸(SA)对NaCl胁迫下棉花幼苗生理生化特性的影响. 水土保持学报, 2014,28(2):165-168, 174.
LIU Q, DONG Y J, LIU S, ZHANG D . Effects of exogenous salicylic acid on the physiological and biochemical characteristics of cotton seedlings under salt stress. Journal of Soil and Water Conservation, 2014,28(2):165-168, 174. (in Chinese)
[29] 熊雪, 罗建川, 魏雨其, 周冀琼, 张英俊 . 不均匀盐胁迫对紫花苜蓿生长特性的影响. 中国农业科学, 2018,51(11):2072-2083.
XIONG X, LUO J C, WEI Y Q, ZHOU J Q, ZHANG Y J . Effects of non-uniform salt stress on growth characteristics of alfalfa. Scientia Agricultura Sinica, 2018,51(11):2072-2083. (in Chinese)
[30] 陈海燕, 崔香菊, 陈熙, 李建友, 张炜 . 盐胁迫及La 3+对不同耐盐性水稻根中抗氧化酶及质膜H+-ATPase的影响 . 作物学报, 2007,33(7):1086-1093.
CHEN H Y, CUI X J, CHEN X, LI J Y, ZHANG W . Effects of salt stress and La 3+ on antioxidative enzymes and plasma membrane H+-ATPase in roots of two rice cultivars with different salt tolerance . Acta Agronomica Sinica, 2007,33(7):1086-1093. (in Chinese)
[31] 魏国平, 朱月林, 刘正鲁, 杨立飞, 张古文 . NaCl胁迫对茄子嫁接苗生长和离子分布的影响. 西北植物学报, 2007,27(6):1172-1178.
WEI G P, ZHU Y L, LIU Z L, YANG L F, ZHANG G W . Growth and ionic distribution of grafted eggplant seedlings with NaCl stress. Acta Botanica Boreali-Occidentalia Sinica, 2007,27(6):1172-1178. (in Chinese)
[32] 薛炎, 王迎春, 王同智 . 濒危植物长叶红砂适应盐胁迫的生理生化机制研究. 西北植物学报, 2012,32(1):136-142.
XUE Y, WANG Y C, WANG T Z . Physiological and biochemical mechanisms of an endemic halophyte Reaumuria trigyna maxim. under salt stress. Acta Botanica Boreali-Occidentalia Sinica, 2012,32(1):136-142. (in Chinese)
[33] 杜欢, 马彤彤, 郭帅, 张颖, 白志英, 李存东 . 大麦近等基因系苗期根系形态及叶片渗透调节物质对PEG胁迫的响应. 中国农业科学, 2017,50(13):2423-2432.
DU H, MA T T, GUO S, ZHANG Y, BAI Z Y, LI C D . Response of root morphology and leaf osmoregulation substances of seedling in barley genotypes with different heights to PEG stress. Scientia Agricultura Sinica, 2017,50(13):2423-2432. (in Chinese)
[34] 杜锦, 向春阳, 张红颖, 罗锋 . NaCl胁迫对玉米幼苗渗透调节物质及Na +、K +、Ca 2+含量的影响 . 种子, 2014,33(7):19-23.
DU J, XIANG C Y, ZHANG H Y, LUO F . Effects of NaCl stress on osmosis-regulating substance and Na +、K +、Ca 2+ contents of maize seedling . Seed, 2014,33(7):19-23. (in Chinese)
[1] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[2] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[3] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[4] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[5] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[6] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[7] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[8] FENG Xiao,ZHANG Fan,CHEN Ying,CHENG JiaXin,CEN KaiYue,TANG XiaoZhi. Effects of Adding Quinoa Protein Pickering Emulsion on Freeze- Thaw Stability of Fish Surimi Gel [J]. Scientia Agricultura Sinica, 2022, 55(10): 2038-2046.
[9] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[10] JIANG WeiQin,HU Qun,YU Hang,MA HuiZhen,REN GaoLei,MA ZhongTao,ZHU Ying,WEI HaiYan,ZHANG HongCheng,LIU GuoDong,HU YaJie,GUO BaoWei. Effect of One-Time Basal Application of the Mixed Controlled-Release Nitrogen Fertilizer in Japonica Rice with Good Taste Quality [J]. Scientia Agricultura Sinica, 2021, 54(7): 1382-1396.
[11] LÜ TengFei,SHEN Jie,MA Peng,DAI Zou,YANG ZhiYuan,XU Hui,ZHENG ChuanGang,MA Jun. Effects of Combined Application of Slow Release Nitrogen Fertilizer and Urea on the Nitrogen Utilization Characteristics in Machine- Transplanted Hybrid Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1410-1423.
[12] HUANG Xiu,YE Chang,YAN JinXiang,LI FuMing,CHU Guang,XU ChunMei,CHEN Song,ZHANG XiuFu,WANG DanYing. Analysis of Ammonium Uptake and Growth Differences of Rice Varieties with Different Nitrogen Recovery Efficiency at Seedling Stage [J]. Scientia Agricultura Sinica, 2021, 54(7): 1455-1468.
[13] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[14] TAO YouFeng,PU ShiLin,ZHOU Wei,DENG Fei,ZHONG XiaoYuan,QIN Qin,REN WanJun. Canopy Population Quality Characteristics of Mechanical Transplanting Hybrid Indica Rice with “Reducing Hills and Stabilizing Basic-Seedlings” in Low-Light Region of Southwest China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4969-4983.
[15] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!