Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (12): 2140-2150.doi: 10.3864/j.issn.0578-1752.2019.12.011

• HORTICULTURE • Previous Articles     Next Articles

Effects of Salt Stress on Seedlings Growth, Photosynthesis and Chlorophyll Fluorescence of Two Species of Artocarpus

SU LanXi,BAI TingYu,YU Huan,WU Gang,TAN LeHe()   

  1. Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan
  • Received:2019-01-11 Accepted:2019-03-18 Online:2019-06-16 Published:2019-06-22
  • Contact: LeHe TAN E-mail:tlh3687@163.com

Abstract:

【Objective】The effects of salt stress on the growth, photosynthesis and chlorophyll fluorescence of the seedlings of two Artocarpus species were studied in order to provide a reference for the utilization of tropical saline-alkali land and the development of characteristic agriculture on islands. 【Method】 Jackfruit and breadfruit, two Artocarpus varieties, were selected and cultivated in sea sand. The sea water solution was applied at 3-leaf full expanding stage and the salt concentration was 0, 3.4, 10.2, 17.0 and 23.8 g?kg -1, named as T0, T1, T2, T3 and T4, respectively. The variation of growth, photosynthetic and chlorophyll fluorescence of jackfruit and breadfruit seedlings under salt stress were investigated. 【Result】 Salt stress significantly inhibited the growth, chlorophyll content and biomass accumulation of jackfruit, and the inhibition effect on breadfruit was less than that of jackfruit. The parameters, including net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular carbon dioxide concentration (Ci) and transpiration rate (Tr) of jackfruit, were decreased under salt stress, while the stomatal inhibition (Ls) was increased. The parameters of breadfruit changed less than that of jackfruit. High salt stress (salt concentration>17.0 g?kg -1) significantly inhibited the photochemical quenching coefficient (qP), PSII activity (Fv/Fo), potential maximum light energy conversion efficiency (Fv/Fm), actual light energy conversion efficiency (ΦPSII), relative electron transfer efficiency (rETR) of jackfruit, and significantly decreased qP, non-photochemical quenching coefficient (NPQ), ΦPSII and rETR of breadfruit. There was a significant positive correlation between chlorophyll content and photosynthetic parameters. The proportion of salt stress, chlorophyll content, net photosynthetic rate and their mutual interaction to explain the change of biomass was 35.6%. 【Conclusion】 Salt stress significantly inhibited the growth, chlorophyll content, photosynthetic parameters and biomass of jackfruit seedlings, while the photosynthetic parameters and biomass of breadfruit were sensitive to high salt stress. The changes of salt stress, chlorophyll content and net photosynthetic rate were closely related to the biomass variation of two Artocarpus varieties.

Key words: jackfruit, breadfruit, salt stress, photosynthesis, chlorophyll fluorescence

Table 1

Growth indexes of the seedlings of jackfruit and breadfruit under salt stress"

处理
Treatment
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
叶面积
Leaf area
(cm2)
叶绿素含量
Chlorophyll
content SPAD
地上部干重
Dry weight of
shoot (g)
地下部干重
Dry weight
of root (g)
总干重
Total dry
weight (g)
根冠比
Ratio of root/
shoot (%)
菠萝蜜
Jackfruit
T0 40.17±4.59a 5.76±0.44a 160.05±44.11a 52.97±1.15a 8.82±0.54a 4.17±0.34a 12.99±0.88a 0.47±0.01b
T1 30.63±3.37b 4.71±0.39b 113.14±6.37b 53.33±4.13a 5.99±0.27b 3.10±0.14b 9.09±0.39b 0.52±0.02b
T2 24.37±4.52b 4.32±0.12b 117.43±5.34b 28.80±5.73bc 5.06±0.15cd 3.45±0.26b 8.52±0.29bc 0.68±0.06a
T3 28.63±2.63b 4.56±0.11b 111.07±5.87b 32.93±5.60b 5.34±0.36bc 3.33±0.14b 8.67±0.25bc 0.63±0.07a
T4 31.80±3.98b 4.31±0.30b 77.84±17.91b 22.67±2.67c 4.62±0.41d 3.12±0.14b 7.74±0.53c 0.68±0.04a
面包果
Breadfruit
T0 77.13±8.87a 8.41±1.10a 266.47±31.90a 44.27±3.15a 17.14±0.80a 5.70±0.36a 22.84±1.10a 0.33±0.01bc
T1 80.23±4.57a 8.62±0.75a 293.23±44.24a 45.73±5.61a 16.91±1.74a 4.81±0.47b 21.72±2.17a 0.28±0.01c
T2 72.10±3.55a 7.81±0.11a 278.34±42.92a 40.53±2.40a 10.70±0.61b 4.13±0.08c 14.84±0.53b 0.39±0.03b
T3 79.17±2.70a 7.66±0.79a 240.91±49.80a 47.37±1.95a 6.89±0.98c 2.12±0.28d 9.00±1.25d 0.31±0.02c
T4 70.00±11.10a 7.40±1.85a 307.84±52.05a 46.67±4.95a 8.16±0.67c 3.63±0.39c 11.79±0.78c 0.45±0.06a

Fig. 1

Photosynthetic parameters in leaves of jackfruit and breadfruit seedlings under salt stress (mean±SE)"

Table 2

Chlorophyll fluorescence in leaves of jackfruit and breadfruit seedlings under salt stress"

处理
Treatment
光化学猝灭系数
Photochemical quenching coefficient
qP
非光化学猝灭系数
Non-photochemical quenching coefficient
NPQ
光系统Ⅱ活性
PSII activity
Fv/Fo
潜在最大光能转换效率
Potential maximum light energy conversion efficiency Fv/Fm
实际光能转换效率
Actual light energy conversion efficiency
ΦPSⅡ
相对电子传递效率
Relative electron transfer efficiency
rETR
菠萝蜜
Jackfruit
T0 0.95±0.02a 0.11±0.02a 3.74±0.03ab 0.79±0.00a 0.72±0.01a 8.29±0.10a
T1 0.94±0.00a 0.10±0.06a 4.07±0.06a 0.80±0.00a 0.72±0.00a 8.31±0.06a
T2 0.95±0.02a 0.18±0.05a 3.80±0.13ab 0.79±0.01a 0.70±0.02a 8.04±0.14a
T3 0.91±0.04ab 0.36±0.41a 3.11±0.44bc 0.75±0.03ab 0.63±0.10ab 7.19±1.18ab
T4 0.88±0.02b 0.44±0.32a 2.37±1.00c 0.69±0.09b 0.55±0.09b 6.35±1.03b
面包果
Breadfruit
T0 0.94±0.02a 0.09±0.01ab 3.78±0.20a 0.79±0.01a 0.71±0.02a 5.93±0.14a
T1 0.93±0.01ab 0.06±0.03ab 3.93±0.17a 0.80±0.01a 0.70±0.01ab 5.84±0.11ab
T2 0.93±0.00ab 0.11±0.00a 3.61±0.01a 0.78±0.00a 0.70±0.00a 5.86±0.01a
T3 0.93±0.04ab 0.10±0.05a 3.84±0.13a 0.79±0.01a 0.70±0.02ab 5.84±0.20ab
T4 0.90±0.01b 0.04±0.02b 3.80±0.30a 0.79±0.01a 0.67±0.02b 5.58±0.14b

Fig. 2

Correlation between the biomass and photosynthetic parameters of jackfruit and breadfruit seedlings under salt stress TDW: total dry weight; RRS: ratio of root/shoot; SPAD: chlorophyll content; Photo: net photosynthetic rate; Cond: stomatal conductance; Ci: Intercellular CO2 concentration; Trmmol: Transpiration rate. “*” indicates significant difference at 0.05 level; “**” indicates significant difference at 0.01 level. Blue indicates a positive correlation, red indicates a negative correlation. The size of the circle indicates the magnitude of the correlation"

Fig. 3

Variation partitioning analysis (VPA) was used to quantify the effects of salt stress (S), net photosynthetic rate (P), and chlorophyll content (SPAD), and all of them on jackfruit and breadfruit seedlings biomassCircles on the edges of the triangle show the percentage of variation explained by each factor alone. The percentage of variation explained by interactions between two or three of the factors is shown as rectangles on the sides and as a circle at the center of the triangle. The unexplained variation is depicted in the rectangle on the bottom"

[1] 张华新, 刘正祥, 刘秋芳 . 盐胁迫下树种幼苗生长及其耐盐性. 生态学报, 2009,29(5):2263-2271.
ZHANG H X, LIU Z X, LIU Q F . Seedling growth and salt tolerance of tree species under NaCl stress. Acta Ecologica Sinica, 2009,29(5):2263-2271. (in Chinese)
[2] 单奇华, 张建锋, 阮伟建, 唐华军, 沈立铭, 陈光才 . 滨海盐碱地土壤质量指标对生态改良的响应. 生态学报, 2011,31(20):6072-6079.
SHAN Q H, ZHANG J F, RUAN W J, TANG H J, SHEN L M, CHEN G C . Response of soil quality indicators to comprehensive amelioration measures in coastal salt-affected land. Acta Ecologica Sinica, 2011,31(20):6072-6079. (in Chinese)
[3] ROZEMA J, FLOWERS T . Ecology crops for a salinized world. Science, 2008,322(5907):1478-1480.
doi: 10.1126/science.1168572
[4] 宁丽华, 张大勇, 刘佳, 何晓兰, 万群, 徐照龙, 黄益洪, 邵宏波 . 盐胁迫下苗期栽培大豆生理响应及Na +动态平衡关键基因的表达 . 中国农业科学, 2016,49(24):4714-4725.
NING L H, ZHANG D Y, LIU J, HE X L, WAN Q, XU Z L, HUANG Y H, SHAO H B . Effect of salt stress on physiological responses and the expression of key genes involved in Na + homeostasis of soybean seedlings . Scientia Agricultura Sinica, 2016,49(24):4714-4725. (in Chinese)
[5] 许振伟, 宋慧佳, 李明燕, 张廷靖, 郭霄 , FRANZISKA Eller, HANS Brix, 杜宁, 侯文轩, 郭卫华. 不同生态型芦苇种群对盐胁迫的生长和光合特性. 生态学报, 2019,39(2):542-549.
XU Z W, SONG H J, LI M Y, ZHANG T J, GUO X, FRANZISKA E, HANS B, DU N, HOU W X, GUO W H . Different adaptions of physiological ecology between estuarine and landlocked reeds in different salinities. Acta Ecologica Sinica, 2019,39(2):542-549. (in Chinese)
[6] 李学孚, 倪智敏, 吴月燕, 李美芹, 刘蓉, 饶慧云 . 盐胁迫对‘鄞红’葡萄光合特性及叶片细胞结构的影响. 生态学报, 2015,35(13):4436-4444.
doi: 10.5846/stxb201409141821
LI X F, NI Z M, WU Y Y, LI M Q, LIU R, RAO H Y . Effects of salt stress on photosynthetic characteristics and leaf cell structure of ‘Yinhong’ grape seedlings. Acta Ecologica Sinica, 2015,35(13):4436-4444. (in Chinese)
doi: 10.5846/stxb201409141821
[7] MUNNS R, TESTER M . Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008,59(1):651-681.
doi: 10.1146/annurev.arplant.59.032607.092911
[8] LU C M, JIANG G M, WANG B S, KUANG T Y . Photosystem Ⅱ photochemistry and photosynthetic pigment composition in salt-adapted halophyte Artimisia anethifolia grown under outdoor conditions. Journal of Plant Physiology, 2003,160(4):403-408.
[9] BONGI G, LORETO F . Gas-exchange properties of salt-stressed olive ( Olea europea L.) leaves. Plant Physiology, 1989,90(4):1408-1416.
[10] 李海云, 赵可夫, 王秀峰 . 盐对盐生植物种子萌发的抑制. 山东农业大学学报(自然科学版), 2002,33(2):170-173.
LI H Y, ZHAO K F, WANG X F . The inhibition of salinity on the germination of halophyte seeds. Journal of Shandong Agricultural University (Natural Science Edition), 2002,33(2):170-173. (in Chinese)
[11] 孙广玉, 蔡淑燕, 胡彦波, 樊传辉 . 盐碱地马蔺光合生理特性的研究. 植物研究, 2006,26(1):74-78.
SUN G Y, CAI S Y, HU Y B, FAN C H . Physiological characteristics of photosynthesis in Iris lactea Pall. var. chinensis ( Fisch.) Koidz grown in salt and alkali soil. Bulletin of Botanical Research, 2006,26(1):74-78. (in Chinese)
[12] HASEGAWA P M, BRESSAN R A, ZHU J K, BOHNERT H J . Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 2000,51(2):463-499.
doi: 10.1146/annurev.arplant.51.1.463
[13] 廖岩, 彭友贵, 陈桂珠 . 植物耐盐性机理研究进展. 生态学报, 2007,27(5):2077-2089.
LIAO Y, PENG Y G, CHEN G Z . Research advances in plant salt-tolerance mechanism. Acta Ecologica Sinica, 2007,27(5):2077-2089. (in Chinese)
[14] 沈义国, 陈受宜 . 植物盐胁迫应答的分子机制. 遗传, 2001,23(4):365-369.
SHEN Y G, CHEN S Y . Molecular mechanism of plant responses to salt stress. Hereditas, 2001,23(4):365-369. (in Chinese)
[15] 杨小波, 胡荣桂 . 热带滨海沙滩上森林植被的组成成分与土壤性质的研究. 生态学杂志, 2000,19(4):6-11.
YANG X B, HU R G . The floral components and soil properties of forest on the tropical sandy beach. Chinese Journal of Ecology, 2000,19(4):6-11. (in Chinese)
[16] 楚光红, 章建新 . 施氮量对滴灌超高产春玉米光合特性、产量及氮肥利用效率的影响. 玉米科学, 2016(1):130-136.
CHU G H, ZHANG J X . Effect of nitrogen application on photosynthetic characteristics, yield and nitrogen use efficiency in drip irrigation of super high-yield spring maize.Journal of Maize Sciences, 2016(1):130-136. (in Chinese)
[17] BERRY J A , DOWNTON W J S. Environmental Regulation of Photosynthesis[A]. In: GOVIND J. ed. Photosynthesis[M]. Vol 2. New York: Academic Press, 1982, 263-343.
[18] 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社, 2000.
BAO S D. Soil Agrochemical Analysis. Beijing: Chinese Agricultural Press, 2000. (in Chinese)
[19] 杨淑萍, 危常州, 梁永超 . 盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响. 中国农业科学, 2010,43(8):1585-1593.
YANG S P, WEI C Z, LIANG Y C . Effects of NaCl stress on the characteristics of photosynthesis and chlorophyll fluorescence at seedlings stage in different sea island cotton genotypes. Scientia Agricultura Sinica, 2010,43(8):1585-1593. (in Chinese)
[20] 谢德意, 王惠萍, 王付欣, 冯复全 . 盐胁迫对棉花种子萌发及幼苗生长的影响. 中国棉花, 2000,27(9):12-13.
XIE D Y, WANG H P, WANG F X, FENG F Q . Effects of germination and growth of cotton under salt stress. Chinese Cotton, 2000,27(9):12-13. (in Chinese)
[21] VICENTE O, BOSCAIU M, NARANJO M Á, ESTRELLES E , BELLÉS J M, SORIANO P. Responses to salt stress in the halophyte Plantago crassifolia(Plantaginaceae). Journal of Arid Environments, 2004,58(4):463-481.
[22] KOHL K L . The effect of NaCl on growth, dry matter allocation and ion uptake in salt marsh and inland populations of Armeria maritima. New Phytologist, 2010,135(2):213-225.
[23] 陈少良, 李金克, 尹伟伦, 王沙生 . 盐胁迫条件下杨树组织及细胞中钾、钙、镁的变化. 北京林业大学学报, 2002,24(5/6):84-88.
CHEN S L, LI J K, YIN W L, WANG S S . Tissue and cellular K +, Ca 2+ and Mg 2+ of poplar under saline salt stress conditions . Journal of Beijing Forestry University, 2002,24(5/6):84-88. (in Chinese)
[24] BEN-ASHER J, TSUYUKI I, BRAVDO B A, SAGI M . Irrigation of grapevines with saline water: I. Leaf area index, stomatal conductance, transpiration and photosynthesis. Agricultural Water Management, 2006,83(1/2):13-21.
doi: 10.1016/j.agwat.2006.01.002
[25] HOSHIDA H, TANAKA Y, HIBINO T, HAYASHI Y, TANAKA A, TAKABE T, TAKABE T . Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Molecular Biology, 2000,43(1):103-111.
doi: 10.1023/A:1006408712416
[26] 裘丽珍, 黄有军, 黄坚钦, 夏国华, 龚宁 . 不同耐盐性植物在盐胁迫下的生长与生理特性比较研究. 浙江大学学报(农业与生命科学版), 2006,32(4):420-427.
QIU L Z, HUANG Y J, HUANG J Q, XIA G H, GONG N . Comparative study on vegetal and physiological characteristics of different salt-tolerant plants under salt stress. Journal of Zhejiang University (Agriculture & Life Sciences Edition), 2006,32(4):420-427. (in Chinese)
[27] 李旭新, 刘炳响, 郭智涛, 常越霞, 贺磊, 陈芳, 路丙社 . NaCl胁迫下黄连木叶片光合特性及快速叶绿素荧光诱导动力学曲线的变化. 应用生态学报, 2013,24(9):2479-2484.
LI X X, LIU B X, GUO Z T, CHANG Y X, HE L, CHEN F, LU B S . Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves. Chinese Journal of Applied Ecology, 2013,24(9):2479-2484. (in Chinese)
[28] 薛忠财, 高辉远, 柳洁 . 野生大豆和栽培大豆光合机构对NaCl胁迫的不同响应. 生态学报, 2011,31(11):3101-3109.
XUE Z C, GAO H Y, LIU J . Different response of photosynthetic apparatus between wild soybean (Glycine soja) and cultivated soybean (Glycine max) to NaCl stress. Acta Ecologica Sinica, 2011,31(11):3101-3109. (in Chinese)
[29] 孙璐, 周宇飞, 李丰先, 肖木辑, 陶冶, 许文娟, 黄瑞冬 . 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学, 2012,45(16):3265-3272.
doi: 10.3864/j.issn.0578-1752.2012.16.005
SUN L, ZHOU Y F, LI F X, XIAO M J, TAO Y, XU W J, HUANG R D . Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of sorghum seedlings. Scientia Agricultura Sinica. 2012,45(16):3265-3272. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.16.005
[30] 李峰, 谢永宏, 覃盈盈 . 盐胁迫条件下湿地植物的适应策略. 生态学杂志, 2009,28(2):314-321.
LI F, XIE Y H, QIN Y Y . Adaptive strategies of wetland plants in salt stress environment. Chinese Journal of Ecology, 2009,28(2):314-321. (in Chinese)
[31] LU C M, JIANG G M, WANG B S, KUANG T Y . Photosystem Ⅱ photochemistry and photosynthetic pigment composition in salt-adapted halophyte Artimisia anethifolia grown under outdoor conditions. Journal of Plant Physiology, 2003,160(4):403-408.
[32] 弋良朋, 王祖伟 . 盐胁迫下3种滨海盐生植物的根系生长和分布. 生态学报, 2010,31(5):1195-1202.
YI L P, WANG Z W . Root system characters in growth and distribution among three littoral halophytes. Acta Ecologica Sinica, 2010,31(5):1195-1202. (in Chinese)
[33] 王树凤, 胡韵雪, 孙海菁, 施翔, 潘红伟, 陈益泰 . 盐胁迫对2种栎树苗期生长和根系生长发育的影响. 生态学报, 2014,34(4):1021-1029.
doi: 10.5846/stxb201209291363
WANG S F, HU Y X, SUN H J, SHI X, PAN H W, CHEN Y T . Effects of salt stress on growth and root development of two oak seedlings. Acta Ecologica Sinica, 2014,34(4):1021-1029. (in Chinese)
doi: 10.5846/stxb201209291363
[34] MORALES F , ABADÍA A, GÓMEZ-APARISI J, ABADÍA J. Effects of combined NaCl and CaCl2 salinity on photosynthetic parameters of barley grown in nutrient solution. Physiologia Plantarum, 1992,86(3):419-426.
doi: 10.1111/ppl.1992.86.issue-3
[35] WINTER K, SCHRAMM M J . Analysis of stomatal and nonstomatal components in the environmental control of CO2 exchanges in leaves of Welwitschia mirabilis. Plant Physiology, 1986,82:173-178.
[36] HATAMI E, ESNA-ASHARI M, JAVADI T . Effect of salinity on some gas exchange characteristics of grape ( Vitis vinifera) cultivars. International Journal of Agriculture and Biology, 2010,12:308-310.
[37] YANG X H, CHEN X Y, GE Q Y, LI B, TONG Y P, ZHANG A M, LI Z S, KUANG T Y, LU C M . Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: A comparison between a hybridization line and its parents grown under field conditions. Plant Science, 2006, 171:389-397.
[38] FARQUHAR G D, SHARKEY T D . Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982,33:317-345.
doi: 10.1146/annurev.pp.33.060182.001533
[39] FOYER C H, NOCTOR G . Tansley review No. 112. Oxygen processing in photosynthesis: Regulation and signalling. New Phytologist, 2000,146:359-388.
doi: 10.1046/j.1469-8137.2000.00667.x
[40] XU C C, LI D Q, ZOU Q, ZHANG J H . Effect of drought on chlorophyll fluorescence and xanthophyll cycle components in winter wheat leaves with different ages. Acta Phytophysiologica Sinica, 1999,25(1):29-37.
[41] 冯国郡, 章建新, 李宏琪, 叶凯, 郭建富 . 甜高粱光合生理特性及其与产量的关系. 西北农林科技大学学报(自然科学版), 2013,41(4):93-100.
FENG G J, ZHANG J X, LI H Q, YE K, GUO J F . Correlativity between photosynthetic physiological characteristics and biological yield of sweet sorghum strain. Journal of Northwest A&F University (Natural Science Edition), 2013,41(4):93-100. (in Chinese)
[42] 姜武, 姜卫兵, 李志国 . 园艺作物光合性状种质差异及遗传表现研究进展. 经济林研究, 2007,25(4):102-108.
JIANG W, JIANG W B, LI Z G . Advance of researches on germ-plasm differences and genetic expression of photosynthetic traits in horticultural crops. Nonwood Forest Research, 2007,25(4):102-108. (in Chinese)
[1] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[2] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[3] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[4] WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457.
[5] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
[6] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[7] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[8] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[9] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[10] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[11] ZONG YuZheng,ZHANG HanQing,LI Ping,ZHANG DongSheng,LIN Wen,XUE JianFu,GAO ZhiQiang,HAO XingYu. Effects of Elevated Atmospheric CO2 Concentration and Temperature on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism in Flag Leaves and Yield of Winter Wheat in North China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4984-4995.
[12] LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations [J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
[13] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[14] ZHENG Wei,SHI Zheng,LONG Mei,LIAO YunCheng. Photosynthetic and Physiological Characteristics Analysis of Yellow- Green Leaf Mutant in Wheat of Jimai5265yg [J]. Scientia Agricultura Sinica, 2021, 54(21): 4539-4551.
[15] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!