Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (10): 1807-1817.doi: 10.3864/j.issn.0578-1752.2019.10.013

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Polymorphisms of ADIPOQ Gene and Their Association with Growth and Carcass Traits in Sheep

AN QingMing1,2,ZHOU HuiTong2,3,WU ZhenYang1,LUO YuZhu2(),Jon G. Hickford2,3   

  1. 1 Tongren University, Tongren 554300, Guizhou, China
    2 Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070,Gansu, China
    3 Gene-Marker Laboratory, Lincoln University, Lincoln 7647, New Zealand
  • Received:2018-11-05 Accepted:2019-03-18 Online:2019-05-16 Published:2019-05-23
  • Contact: YuZhu LUO E-mail:luoyz@gsau.edu.cn

Abstract:

【Objective】In this study, polymorphisms and linkage relationship of ovine ADIPOQ (adiponectin) gene were investigated and their effects on some growth and carcass traits were estimated, so as to enrich the molecular genetic data for sheep. 【Method】Mutations in Exon-1 and Exon-2 of ADIPOQ gene were detected by PCR-SSCP in 8 commodity sheep populations, and the relationship between mutations in growth and carcass traits in New Zealand (NZ) Romney lambs was investigated using General Linear Models (GLMs). 【Result】In total, thirteen SNPs were detected in Exon-1 and Exon-2 regions of ovine ADIPOQ gene, and the nucleotide substitution c.46T/C in Exon-2 resulted in amino acid change (p.Tyr16His). Allele A1 and B1 were the dominant allele in Exon-1, Allele A2 and D2 were the dominant allele in Exon-2, and there were difference of allele frequencies between these two regions. The majority population was moderately polymorphic in all regions (PIC<0.5), except Texel, Perendale and Dorset Down was low polymorphic in Exon-2 region (PIC<0.25), and there was a high linkage relationship of these mutation and tend to shared genetic linkages (D’=0.952, r 2=0.365). The association analysis showed that the mutations in Exon-1 region of ovine ADIPOQ gene had different effects on growth traits of male and female lambs. In male lambs, individuals with possessing allele A1 had lower tailing weight, weaning weight and pre-weaning growth rate than those no-possessing (P<0.05), but no associations were detected in female lambs (P>0.05). In female lambs, individuals with possessing allele B1 had higher tailing weight than those no-possessing (P<0.05), however, no associations were detected in male lambs (P>0.05). And individuals with possessing B1B1 had higher tailing weight and weaning weight in male lambs. The carcass traits association analysis results showed that individuals with possessing allele A1 had lower hot-carcass weight, loin yield, leg yield and total yield than those no-possessing (P<0.05), and individuals with possessing allele B1 had higher leg yield, proportion of led yield and lower proportion shoulder yield than those no-possessing (P<0.05), individuals with possessing B1B1 had higher hot carcass weight, loin yield, leg yield and total yield (P<0.05). 【Conclusion】Exon-1 and Exon-2 of ovine ADIPOQ gene had abundant polymorphisms, and SNP c.46T/C was non-synonymous. The mutations of Exon-1 of ovine ADIPOQ gene might affect some growth traits and carcass traits, and selecting sheep with allele B1 and genotype B1B1, or eliminating ones with allele A1 and A1A1 could improve some growth traits and carcass traits of Romney sheep.

Key words: sheep, ADIPOQ gene, gender-specific, growth traits, carcass traits

Table 1

Primer information of ovine ADIPOQ gene"

引物名称 Primers 引物序列(5′-3′) Sequences of primer 扩增片段长度 Length of amplicons (bp) 退火温度 Temperature (°C)
P1 F:TTCCTGCTTCTGATCTTGACC 388 bp 58.0 °C
R:CAGCCTAGAAATTGAATCAGTC
P2 F:ACAGCGTGGATCTGGGTTC 390 bp 62.0 °C
R:CACAATTCACTTTCGGCTGC

Table 2

SSCP electrophoresis conditions"

扩增产物 Amplicons 凝胶浓度 PAGE concentration(%) 电泳条件 Electrophoresis condition
P1 14 300V,17.0?C,19h
P2 14 200V,32.5?C,19h

Fig. 1

SSCP for Exon-1 of ovine ADIPOQ gene"

Fig. 2

SSCP for Exon-2 of ovine ADIPOQ gene"

Table 3

Mutation sites in Exon-1 and Exon-2 of ovine ADIPOQ gene"

Exon-1 Exon-2
突变位点
Mutation sites
等位基因 Allele 突变位点
Mutation sites
等位基因 Allele
A1 B1 C1 D1 A2 B2 C2 D2
c.-9831 A G A A c.46# A G A A
c.-9791 C C C A c.135 C C C T
c.-9790 G T G G c.199+24 G T G G
c.-9644 G G A G c.199+71 G G A G
c.-9640 A G A A c.199+94 A G A A
c.-9632 C T C C c.199+126 C T C C
c.-9631 A G A A

Table 4

Frequency of ovine ADIPOQ gene different regions in various sheep breeds (%)"

品种
(Breed)
数量
Number
外显子1区 Exon-1 外显子2 Exon-2
A1 B1 C1 D1 A2 B2 C2 D2
美利奴Merino 68 50.00 48.53 0.00 1.47 55.15 5.15 9.55 30.15
罗姆尼Romney 71 52.82 41.55 4.93 0.70 76.76 0.00 4.93 18.31
萨福克Suffolk 42 53.57 46.43 0.00 0.00 75.00 1.19 0.00 23.81
特克塞尔羊Texel 22 56.82 43.18 0.00 0.00 100.00 0.00 0.00 0.00
考利代羊Corriedale 41 39.02 57.32 0.00 3.66 75.61 2.44 6.10 15.85
派伦代羊Perendale 14 57.14 39.29 0.00 3.57 89.29 0.00 0.00 10.71
杜泊羊Dorper 39 76.92 23.08 0.00 0.00 56.41 1.28 38.46 3.85
丘陵陶塞特Dorset down 19 81.58 18.42 0.00 0.00 100.00 0.00 0.00 0.00
总数Overall 316 55.70 42.09 1.11 1.10 72.78 1.74 8.70 16.78

Table 5

Genetic characteristics and Hardy-Weinberg testing of ADIPOQ gene in different sheep"

品种
Breed
外显子1 Exon-1 外显子2 Exon-2 卡方检验域 χ2 testing
Na Ne Ho He PIC Na Ne Ho He PIC 外显子1
Exon-1
外显子2
Exon-2
美利奴 Merino 3.00 2.06 0.53 0.47 0.40 4.00 2.45 0.32 0.68 0.53 P = 0.45 P<0.01
罗姆尼 Romney 4.00 2.02 0.61 0.39 0.45 3.00 1.60 0.59 0.41 0.33 P<0.05 P = 0.53
萨福克 Suffolk 2.00 1.99 0.40 0.60 0.37 3.00 1.61 0.52 0.48 0.32 P = 0.23 P = 0.09
特克塞尔羊 Texel 2.00 1.96 0.68 0.31 0.37 3.00 1.58 0.57 0.43 0.00 P = 0.08 P = 0.11
考利代羊 Corriedale 3.00 2.07 0.41 0.59 0.42 4.00 1.66 0.61 0.39 0.36 P = 0.13 P = 0.12
派伦代羊 Perendale 3.00 2.07 0.57 0.43 0.42 2.00 1.23 0.79 0.21 0.17 P = 0.67 P = 0.72
杜泊羊 Dorper 2.00 1.55 0.64 0.36 0.29 4.00 2.14 0.46 0.54 0.44 P = 0.99 P<0.01
丘陵陶塞特 Dorset Down 2.00 1.43 0.63 0.37 0.26 2.00 1.72 0.67 0.33 0.00 P = 0.37 P = 0.13

Table 6

Association of alleles in Exon-1 of ADIPOQ gene with growth traits (mean ± SE) in male and female Romney lambs"

生长性状
Growth traits
等位
基因
Allele
其它等位基因
Other Allele
in model
公羔 Male Lambs 母羔 Female Lambs
存在
Present (1)
数目
Number
缺失
Absent (0)
数目
Number
P
P-value
存在
Present (1)
数目
Number
缺失
Absent (0)
数目
Number
P
P-value
初生重
Birth weight (kg)
A1 None 5.51±0.16 400 5.48±0.17 150 0.800 4.90±0.20 382 4.81±0.21 155 0.278
B1 None 5.57±0.16 418 5.44±0.17 132 0.173 4.88±0.20 408 4.87±0.22 129 0.938
断尾重
Tailing weight (kg)
A1 None 12.91±0.53 400 13.61±0.56 150 0.019 10.58±0.62 382 10.60±0.65 155 0.934
B1 None 13.18±0.32 418 13.62±0.39 132 0.155 10.67±0.61 408 10.06±0.65 129 0.019
A1 B1 12.91±0.53 400 13.75±0.56 150 0.010
断奶重
Weaning weight
(kg)
A1 None 30.43±0.90 400 31.64±0.95 150 0.017 25.05±1.05 382 24.86±1.10 155 0.661
B1 None 30.04±0.55 418 30.75±0.66 132 0.179 25.12±1.04 408 24.38±1.10 129 0.089
A1 B1 30.52±0.91 400 31.85±0.96 150 0.010
断奶前生长速度
Pre-weaning growth rate (g·d-1)
A1 None 289.10±9.3 400 300.80±9.7 150 0.025 234.20±1.1 382 233.60±1.2 155 0.887
B1 None 279.60±5.7 418 284.80±6.9 132 0.355 234.90±1.1 408 229.40±1.1 129 0.233

Table 7

Association of genotype in Exon-1 of ADIPOQ gene with growth traits (mean ± SE) in male and female Romney lambs"

生长性状
Growth traits
基因型
Genotype
公羔 Male lambs 母羔 Female lambs
平均值±标准误
Mean±SE
数目
Number
P
P-value
平均值±标准误
Mean±SE
数目
Number
P
P-value
初生重
Birth weight (kg)
A1A1 5.42±0.17 132 0.291 4.87±0.22 129 0.521
A1B1 5.56±0.17 268 4.90±0.21 253
B1B1 5.51±0.17 150 4.81±0.21 155
断尾重
Tailing weight (kg)
A1A1 13.17±0.56 132 0.026 10.06±0.65 129 0.056
A1B1 12.76±0.54 268 10.70±0.62 253
B1B1 13.54±0.56 150 10.57±0.64 155
断奶重
Weaning weight (kg)
A1A1 30.82±0.96 132 0.028 24.38±1.10 129 0.160
A1B1 30.20±0.92 268 25.22±1.05 253
B1B1 31.54±0.95 150 24.83±1.09 155
断奶前生长速度
Pre-weaning growth rate(g·d-1
A1A1 291.90±9.9 132 0.055 229.40±11.7 129 0.445
A1B1 287.30±9.5 268 235.40±11.1 253
B1B1 300.00±9.8 150 233.30±11.6 155

Table 8

Association of ovine ADIPOQ gene variant in promoter with carcass muscle traits in Romney sheep"

性状
Traits
等位基因
Allele
其它等位基因 Other allele in model 平均值±标准误 (Mean ± SE) P
P-value
存在
Present
数量
Number
缺失
Absent
数量
Number
热胴体重(kg)
Hot weight (H-W)
A1 None 17.04 ± 0.29 331 17.34 ± 0.31 125 0.086
B1 None 17.07 ± 0.29 341 17.32 ± 0.32 115 0.149
A1 B1 17.07 ± 0.30 331 17.45 ± 0.32 125 0.036
B1 A1 17.09 ± 0.30 341 17.43 ± 0.32 115 0.060
GR值(cm)
GR value (V-GR)
A1 None 2.36 ± 0.48 331 2.19 ± 0.49 125 0.550
B1 None 2.17 ± 0.47 341 2.54 ± 0.50 115 0.196
A1 B1 2.39 ± 0.48 331 2.30 ± 0.51 125 0.752
B1 A1 2.17 ± 0.18 341 2.52 ± 0.51 115 0.234
后退瘦肉量(%)
Leg yield
A1 None 20.69 ± 0.21 331 21.09 ± 0.21 125 0.001
B1 None 20.93 ± 0.21 341 20.67 ± 0.22 115 0.039
A1 B1 20.68 ± 0.21 331 21.04 ± 0.22 125 0.004
B1 A1 20.95 ± 0.20 341 20.77 ± 0.22 115 0.164
腰部瘦肉量(%)
Loin yield
A1 None 14.16 ± 0.15 331 14.41 ± 0.16 125 0.006
B1 None 14.28 ± 0.15 341 14.20 ± 0.16 115 0.359
A1 B1 14.16 ± 0.15 331 14.40 ± 0.16 125 0.009
B1 A1 14.29 ± 0.15 341 14.27 ± 0.16 115 0.755
肩部瘦肉量(%)
Shoulder yield
A1 None 16.93 ± 0.17 331 17.12 ± 0.18 125 0.067
B1 None 16.99 ± 0.17 341 17.05 ± 0.18 115 0.550
A1 B1 16.95 ± 0.17 331 17.16 ± 0.18 125 0.044
B1 A1 16.70 ± 0.17 341 17.11 ± 0.18 115 0.301
总瘦肉量(%)
Total yield
A1 None 51.79 ± 0.43 331 52.63 ± 0.45 125 0.001
B1 None 52.20 ± 0.43 341 51.92 ± 0.45 115 0.281
A1 B1 51.79 ± 0.43 331 52.60 ± 0.45 125 0.002
B1 A1 52.24 ± 0.43 341 52.14 ± 0.46 115 0.712
后腿瘦肉比例(%)
Proportion of leg yield
A1 None 39.94 ± 0.21 331 40.07 ± 0.22 125 0.290
B1 None 40.09 ± 0.20 341 39.79 ± 0.22 115 0.017
A1 B1 39.92 ± 0.21 331 39.98 ± 0.22 125 0.589
B1 A1 40.09 ± 0.21 341 39.81 ± 0.22 115 0.027
腰部瘦肉比例(%)
Proportion of loin yield
A1 None 27.34 ± 0.17 331 27.37 ± 0.18 125 0.733
B1 None 27.35 ± 0.17 341 27.35 ± 0.18 115 0.932
A1 B1 27.34 ± 0.17 331 27.37 ± 0.18 125 0.742
B1 A1 27.36 ± 0.17 341 27.36 ± 0.18 115 0.992
肩部瘦肉比例(%)
Proportion of shoulder yield
A1 None 32.72 ± 0.22 331 32.55 ± 0.23 125 0.209
B1 None 32.55 ± 0.22 341 32.86 ± 0.23 115 0.020
A1 B1 32.74 ± 0.22 331 32.64 ± 0.23 125 0.447
B1 A1 32.55 ± 0.22 341 32.83 ± 0.23 115 0.036

Table 9

Association of ovine ADIPOQ genotypes in promoter with carcass muscles traits in Romney sheep"

性状 Traits 基因型 Genotype 数量 Number 平均值±标准误 Mean ± SE PP-value
热胴体重(kg)
Hot weight (H-W)
A1A1 115 17.24 ± 0.32 0.039
A1B1 216 16.89 ± 0.31
B1B1 125 17.27 ± 0.31
GR值(cm)
GR value (V-GR)
A1A1 115 2.56 ± 0.51 0.412
A1B1 216 2.21 ± 0.49
B1B1 125 2.12 ± 0.50
后腿瘦肉量(%)
Leg yield
A1A1 115 20.59 ± 0.22 0.002
A1B1 216 20.77 ± 0.21
B1B1 125 21.13 ± 0.21
腰部瘦肉量(%)
Loin yield
A1A1 115 14.14 ± 0.16 0.021
A1B1 216 14.17 ± 0.15
B1B1 125 14.41 ± 0.16
肩部瘦肉量(%)
Shoulder yield
A1A1 115 17.00 ± 0.18 0.109
A1B1 216 16.89 ± 0.18
B1B1 125 17.10 ± 0.18
总瘦肉量(%)
Total yield
A1A1 115 51.74 ± 0.45 0.005
A1B1 216 51.84 ± 0.44
B1B1 125 52.65 ± 0.45
后腿瘦肉比例(%)
Proportion of leg yield
A1A1 115 39.78 ± 0.22 0.050
A1B1 216 40.06 ± 0.21
B1B1 125 40.13 ± 0.22
腰部瘦肉比例(%)
Proportion of loin yield)
A1A1 115 27.34 ± 0.18 0.944
A1B1 216 27.34 ± 0.17
B1B1 125 27.37 ± 0.18
肩部瘦肉比例(%)
(Proportion of shoulder yield
A1A1 115 32.88 ± 0.23 0.050
A1B1 216 32.60 ± 0.23
B1B1 125 32.50 ± 0.23
[1] YANG Y, ZHANG F, DING R, SKRIP L, WANG Y, LEI H, HU D . ADIPOQ gene polymorphisms and cancer risk: a meta-analysis. Cytokine, 2013,61(2):565-671.
[2] YANG W S, CHUANG L M . Human genetics of adiponectin in the metabolic syndrome. Journal of Molecular Medicine, 2006,84(2):112-121.
doi: 10.1007/s00109-005-0011-7
[3] SCHERER P E, WILLIAMS S, FOGLIANO M, BALDINI G, LODISH H F . A Novel Serum Protein Similar to C1q, Produced Exclusively in Adipocytes. Journal of Biological Chemistry, 1995,270(45):26746-26749.
doi: 10.1074/jbc.270.45.26746
[4] HSUEH W C, PL S J, MITCHELL B D, POLLIN T I, KNOWLER W C, EHM M G, BELL C J, SAKUL H, WAGNER M J, BURNS D K . Genome-wide and fine-mapping linkage studies of type 2 diabetes and glucose traits in the Old Order Amish: evidence for a new diabetes locus on chromosome 14q11 and confirmation of a locus on chromosome 1q21-q24. Diabetes, 2003,52(2):550-557.
doi: 10.2337/diabetes.52.2.550
[5] YAMAUCHI T, KAMON J, ITO Y, TSUCHIDA A, YOKOMIZO T, KITA S, SUGIYAMA T, MIYAGISHI M, HARA K, TSUNODA M . Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 2003,423(6941):762-769.
doi: 10.1038/nature01705
[6] KHARROUBI I, RASSCHAERT JEIZIRIK D L, CNOP M . Expression of adiponectin receptors in pancreatic beta cells. Biochemical & Biophysical Research Communications, 2003,312(4):1118-1122.
[7] YAMAUCHI T, HARA K, KUBOTA N, TERAUCHI Y, TOBE K, FROGUEL P, NAGAI R, KADOWAKI T . Dual roles of adiponectin/Acrp30 in vivo as an anti-diabetic and anti-atherogenic adipokine. Current Drug Targets - Immune Endocrine & Metabolic Disorders, 2003,3(3):243-253.
[8] 孟宪然, 杜琛, 王静, 付绍印, 郑竹清, 张文广, 李金泉 . 基于RNA-Seq识别山羊肉品质候选基因. 畜牧兽医学报, 2015,46(08):1300-1307.
MENG X R, DU C, WANG J, FU S Y, ZHENG Z Q, ZHANG W G, LI J Q . RNA-Seq Approach for Identifying Candidate Genes of Meat Quality in Goats. Acta Veterinariaet Zootechnica Sinica, 2015,46(08):1300-1307. (in Chinese)
[9] CIESLAK J, FLISIKOWSKA T, SCHNIEKE A, KIND A, SZYDLOWSKI M, SWITONSKI M, FLISIKOWSKI K . Polymorphisms in the promoter region of the adiponectin (ADIPOQ) gene are presumably associated with transcription level and carcass traits in pigs. Animal Genetics, 2013,44(3):340-343.
[10] DAI L H, XIONG Y Z, DENG C Y, JIANG S W, ZUO B, ZHENG R, LI F E, LEI M . Association of the A-G polymorphism in porcine adiponectin gene with fat deposition and carcass traits. Asian Australasian Journal of Animal Sciences, 2006,19(6):779-783.
doi: 10.5713/ajas.2006.779
[11] MORSCI N S, SCHNABEL R D, TAYLOR J F . Association analysis of adiponectin and somatostatin polymorphisms on BTA1 with growth and carcass traits in Angus cattle. Animal Genetics, 2006,37(6):554-562.
doi: 10.1111/age.2006.37.issue-6
[12] SHIN S, CHUNG E . Novel SNPs in the bovine ADIPOQ and PPARGC1A genes are associated with carcass traits in Hanwoo (Korean cattle). Molecular Biology Reports, 2013,40(7):4651-4660.
[13] 刘重旭, 王凭青, 张宝云, 储明星, 邓腊梅, 谭颖, 樊奇 . 贵州白山羊和古蔺马羊脂联素基因多态性及其与繁殖性能的关联研究. 中国农业科学, 2011,44(9):1916-1922.
LIU C X, WANG P Q, ZHANG B Y, CHU M X, DENG L M, TAN Y, FAN Q . Polymorphism of adiponectin gene and its relationship with reproductive ability in Guizhou White and Gulin Ma Goats. Scientia Agricultura Sinica, 2011,44(9):1916-1922. (in Chinese)
[14] ZHOU H, HICKFORD J.G. H. , FANG Q . A two-step procedure for extracting genomic DNA from dried blood spots on filter paper for polymerase chain reaction amplification. Analytical Biochemistry, 2006,354(1):159-161.
doi: 10.1016/j.ab.2006.03.042
[15] SLATKIN M . Linkage disequilibrium--understanding the evolutionary past and mapping the medical future. Nature Reviews Genetics, 2008,9(6):477-485.
doi: 10.1038/nrg2361
[16] ARDLIE K G, KRUGLYAK L, SEIELSTAD M . Patterns of linkage disequilibrium in the human genome. Nature Reviews Genetics, 2002,3(4):299-309.
doi: 10.1038/nrg777
[17] CHU H, WANG M, ZHONG D, SHI D, MA L, TONG N, ZHANG Z . ADIPOQ polymorphisms are associated with type 2 diabetes mellitus: A meta‐analysis study. Diabetes/metabolism research and reviews, 2013,29(7):532-545.
[18] YUAN Y, JIANG H, KUANG J, HOU X, FENG Y, SU Z . Genetic variations in ADIPOQ gene are associated with chronic obstructive pulmonary disease. PloS One, 2012,7(11):e50848.
[19] HOUDE A, MURPHY B, MATHIEU O, BORDIGNON V, PALIN M F . Characterization of swine adiponectin and adiponectin receptor polymorphisms and their association with reproductive traits. Animal Genetics, 2010,39(3):249-257.
[20] FANG X, DU Y, ZHANG C, SHI X Y, CHEN D X, SUN J J, JIN Q J, LAN X Y, CHENG H . Polymorphism in a microsatellite of the acrp30 gene and its association with growth traits in goats. Biochemical Genetics, 2011,49(7-8):533-539.
doi: 10.1007/s10528-011-9428-6
[21] YANG H, YE E, SI G, CHENG L M, CAI L Q, YE C F, ZHANG C, LU X M . Adiponectin gene polymorphism rs2241766 T/G is associated with response to pioglitazone treatment in type 2 diabetic patients from Southern China. PloS One, 2014,9(11):e112480
doi: 10.1371/journal.pone.0112480
[22] GU H F . Biomarkers of adiponectin: plasma protein variation and genomic DNA polymorphisms. Biomarker insights, 2009,4(4):123-133.
[23] 沈留红, 江涛, 巫晓峰, 姜思汛, 肖劲邦, 曹随忠, 余树民, 邓俊良, 左之才, 彭广能, 马晓平, 钟志军, 任志华, 王娅, 胡延春 . 奶牛胎盘脂联素、瘦素、内脂素与犊牛初生重相关性研究. 畜牧兽医学报, 2017,48(01):185-192.
SHEN L H, JIANG T, WU X F, JIANG S X, XIAO J B, CAO S Z, YU S M, DENG J L, ZUO Z C, PENG G N, MA X P, ZHONG Z J, REN Z H, WANG Y, HU Y C . The Correlation between adiponectin, leptin, visfatin in placenta and calf birth weight. Acta Veterinariaet Zootechnica Sinica, 2017,48(01):185-192. (in Chinese)
[24] RIESTRA P, GEBREAB S Y, XU R, KHAN R J, BIDULESCU A, CORREA A, TEKOLA-AYELE F, DAVIS S K . Gender-specific associations between ADIPOQ gene polymorphisms and adiponectin levels and obesity in the Jackson Heart Study cohort. BMC Medical Genetics, 2015,16(1):65.
[25] REISZPORSZASZ S, BHASIN S, ARTAZA J N, SHEN R, SINHA- HIKIM I, HOUGUE A, FIELDER T J, GONZALEA- CADAVID N F . Lower skeletal muscle mass in male transgenic mice with muscle- specific overexpression of myostatin. Ajp Endocrinology & Metabolism, 2003,285(4):E876-888.
[26] HAN J, ZHOU H, FORREST R H, SEDCOLE J R, FRAMPTON C M, HICKFORD J G H . Effect of myostatin (MSTN) g+6223G > A on production and carcass traits in New Zealand Romney Sheep. Asian-Australasian Journal of Animal Sciences, 2010,23(7):863-866.
doi: 10.5713/ajas.2010.90392
[27] LEE Y S, LEE S J . Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2. PNAS, 2013,110(39):E3713-3722.
doi: 10.1073/pnas.1309907110
[28] WANG J Q, ZHOU H, FANG Q, LIU X, LUO Y Z, HICKFORD J G H . Effect of variation in ovine WFIKKN2 on growth traits appears to be gender-dependent. Scientific Report, 2015,5:12347; doi: 10.1038/srep12347.
doi: 10.1038/srep12347
[29] VOLK M G . An examination of the evidence supporting the association of dietary cholesterol and saturated fats with serum cholesterol and development of coronary heart disease. Alternative Medicine Review, 2007,12(3):228-246.
[30] OWECKI M, MICZKE A, KACZMAREK M, HOPPE-GOLEBIEWSKA J, PUPEK-MUSIALIK D, SLOMSKI R, BRYLL W, CYMERYS M, NIKISCH E, SOWIŃSKI J . The Y111 H (T415C) polymorphism in exon 3 of the gene encoding adiponectin is uncommon in Polish obese patients. Hormone & Metabolic Research, 2007,39(11):797-800.
[1] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[2] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[3] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[4] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[5] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[6] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[7] KE Na,HAO ZhiYun,WANG JianQing,ZHEN HuiMin,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin,ZHAO ZhiDong,HUANG ZhaoChun,LIANG WeiWei,WANG JiQing. The miR-221 Inhibits the Viability and Proliferation of Ovine Mammary Epithelial Cells by Targeting IRS1 [J]. Scientia Agricultura Sinica, 2022, 55(10): 2047-2056.
[8] ZHANG Lan,WANG LiangZhi,HUANG YanLing,LIAO XiuDong,ZHANG LiYang,LÜ Lin,LUO XuGang. Effects of Dietary Supplemental Pattern of Trace Eloments on the Growth Performance, Carcass Traits and Meat Quality of Broilers [J]. Scientia Agricultura Sinica, 2021, 54(22): 4906-4916.
[9] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[10] LI SongMei,QIU YuGe,CHEN ShengNan,WANG XiaoMeng,WANG ChunSheng. CRISPR/Cas9 Mediated Exogenous Gene Knock-in at ROSA26 Locus in Sheep Umbilical Cord Mesenchymal Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(2): 400-411.
[11] WANG Chen,ZHANG HongWei,WANG HuCheng,SUN XiaoPing,LI FaDi,YANG BoHui. Energy and Protein Requirements of Alpine Merino Growing Sheep [J]. Scientia Agricultura Sinica, 2021, 54(16): 3537-3548.
[12] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
[13] ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods [J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
[14] LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444.
[15] LI WenJuan,TAO Hui,ZHANG NaiFeng,MA Tao,DIAO QiYu. Effects of High-Fat Diet on Energy Metabolism and Slaughter Performance of Early-Weaning Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2206-2216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!