Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (20): 3840-3851.doi: 10.3864/j.issn.0578-1752.2018.20.003

• THEORETICAL BASIS • Previous Articles     Next Articles

Characteristics of N, P and K Nutrient Demand of High-Yielding Winter Wheat in North China Plain

QingSong ZHANG1(), DianJun LU2, ShanChao YUE3, Ai ZHAN3, ZhenLing CUI1()   

  1. 1College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193
    2Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008
    3Northwest A&F University/State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Yangling 712100, Shaanxi
  • Received:2018-01-19 Accepted:2018-06-05 Online:2018-10-16 Published:2018-10-16

Abstract:

【Objective】The objective of this study was to clarify the characteristics of N, P and K nutrient demand of high-yielding winter wheat and to identity the relationship between N, P and K requirements and grain yield, so the results of the study could provide theoretical basis and technical support for in-season nutrient management of high-yielding winter wheat in North China Plain. 【Method】 Under the optimal nitrogen, phosphorus and potassium fertilizer treatment, some databases of nutrient demand of winter wheat was created by collecting on-farm experiments in different places and in many years to evaluate the relationship between aboveground N, P and K uptake and grain yield to quantify N, P and K requirements per ton grain yield in North China Plain.【Result】For the optimal N fertilizer treatment, the average N requirement per ton grain in North China Plain was 24.3 kg and it declined with increasing grain yield. For the yield ranges between <4.5 t·hm-2 and 6.0 to 7.5 t·hm-2, the N requirement per ton grain decreased from 27.1 kg to 24.5 kg due to increasing harvest index and decreasing grain N concentration. For the yield ranges between 6.0 to 7.5 t·hm-2 and 9.0 to 10.5 t·hm-2, the N requirement per ton grain decreased from 24.5 kg to 22.7 kg due to decreasing grain N concentration. For the yield ranges >10.5 t·hm-2, the N requirement per ton grain tended to be stable and changed little. Under the optimal P fertilizer treatment, the average P requirement per ton grain was 4.5 kg, and it declined from 4.7 kg in the yield range of <4.5 t·hm-2 to 4.2 kg in the yield range of >9.0 t·hm-2 due to the increasing harvest index and the diluting effect of declining grain P concentrations. Under the optimal K fertilizer treatment, the average K requirement per ton grain was 21.1 kg and it declined with increasing grain yield, it decreased from 23.8 kg with <4.5 t·hm-2 to 20.2 kg with >7.5 t·hm-2, which was attributed to the increase of the harvest index and decline in grain potassium concentrations. The largest variation in dry matter and nutrient accumulation occurred from the stem elongation stage to anthesis stage.【Conclusion】Under the optimal nitrogen, phosphorus and potassium fertilizer treatment in North China Plain, the N, P and K uptake requirement increased with increasing grain yield. The average N, P and K requirement per ton grain declined with increasing grain yield, which was attributed to the increase of the harvest index and decline in grain N, P and K concentrations. For different yield levels of winter wheat, there was higher dry matter accumulation rate and nutrient uptake rate after the stem elongation stage of high yield levels.

Key words: winter wheat, yield level, grain yield, nutrient requirement, dry matter accumulation, North China Plain

Fig. 1

Relationship of above-ground N uptake (A) and winter wheat grain yield as well as N uptake per ton wheat grain (B) Modified according YUE et al.[16]. The solid line represents the relationship and the dashed lines represent the prediction band (P=0.95), ***Significant at the 0.001 (A). The solid and dashed lines indicate median and mean, respectively (B)"

Fig. 2

Harvest index (A), N harvest index (B), grain N concentration (C) and straw N concentration (D) of the optimal N treatment at maturity of winter wheat for different yield ranges. Modified according YUE et al. (2012) [16]. The solid and dashed lines indicate median and mean, respectively"

Table 1

Descriptive statistics of grain yield of the optimal N treatment at different yield ranges [16]"

产量范围
Yield ranges(t·hm-2
样本量
n
平均值
Mean
标准差
SD
最小值
Min.
25%位点
25%Q
中值
Med.
75%位点
75%Q
最大值
Max.
<4.5 24 4.0 0.4 3.2 3.9 4.1 4.3 4.5
4.5-6.0 103 5.3 0.4 4.5 5.0 5.3 5.7 6.0
6.0-7.5 147 6.7 0.4 6.0 6.3 6.6 7.0 7.5
7.5-9.0 64 8.1 0.5 7.5 7.7 8.1 8.6 8.9
9.0-10.5 66 9.8 0.4 9.0 9.6 9.9 10.2 10.5
>10.5 25 11.0 0.3 10.5 10.8 11.1 11.3 11.8
全部All 429 7.2 1.9 3.2 5.8 6.7 8.6 11.8

Fig. 3

Changes in dry matter (A) and N accumulation (B) of winter wheat with three yield ranges. Re-greening, stem elongation, anthesis and maturity stages are indicated by GS23, GS30, GS60, and GS100, respectively"

Fig. 4

Relationship of above-ground P uptake (A) and winter wheat grain yield and P uptake per ton wheat grain (B) Modified according ZHAN et al. [17]. The solid line represents the relationship and the dashed lines represent the prediction band (P=0.95), ***Significant at the 0.001 (A). The solid and dashed lines indicate median and mean(B)"

Fig. 5

Harvest index (A), P harvest index (B), grain P concentration (C) and straw P concentration (D) of the optimal P treatment at maturity of winter wheat for different yield ranges. Modified according ZHAN et al.[17]. The solid and dashed lines indicate median and mean, respectively"

Fig. 6

Changes in dry matter (A) and P accumulation (B) of winter wheat for four yield ranges. Modified according ZHAN et al.[17]. Re-greening, stem elongation, anthesis and maturity stages are indicated by GS25, GS30, GS60, and GS100, respectively"

Fig. 7

Relationship of above-ground K uptake (A) and winter wheat grain yield and K uptake per ton wheat grain (B) Modified according ZHAN et al.[18]. The solid line represents the relationship and the dashed lines represent the prediction band (P=0.95), ***Significant at the 0.001 (A). The solid and dashed lines indicate median and mean, respectively (B)"

Fig. 8

Harvest index (A), K harvest index (B), grain K concentration (C) and straw K concentration (D) of the optimal K treatment at maturity of winter wheat for different yield ranges. Modified according ZHAN et al.[18]. The solid and dashed lines indicate median and mean, respectively"

[1] CHEN X P, CUI Z L, VITOUSEK P M, CASSMAN K G, MATSON P A, BAI J S, MENG Q F, HOU P, YUE S C, RÖMHELD V, ZHANG F S. Integrated soil-crop system management for food security.Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16): 6399-6404.
doi: 10.1073/pnas.1101419108 pmid: 21444818
[2] 彭雪松. 河南省小麦玉米化肥施用状况与应用效果研究[D]. 郑州: 河南农业大学, 2012.
PENG X S.Study on chemical fertilizer consumption and application effect on wheat and maize in Henan province[D]. Zhengzhou: Henan Agricultural University, 2012. (in Chinese)
[3] CUI Z L, CHEN X P, ZHANG F S.Current nitrogen management status and measures to improve the intensive wheat-maize system in China.Ambio, 2010, 39(5/6): 376-384.
doi: 10.1007/s13280-010-0076-6 pmid: 21053721
[4] GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W, VITOUSEK P M, ZHANG F S.Significant acidification in major Chinese croplands.Science, 2010, 327(5968): 1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[5] LIU X J, DUAN L, MO J M, DU E Z, SHEN J L, LU X K, ZHANG Y, ZHOU X B, HE C N, ZHANG F S.Nitrogen deposition and its ecological impact in China: An overview.Environmental Pollution, 2011, 159(10): 2251-2264.
doi: 10.1016/j.envpol.2010.08.002 pmid: 20828899
[6] 马政华, 寇长林, 康利允. 分层供水施磷对冬小麦产量和氮、磷、钾养分吸收及其在不同器官分配的影响. 中国农学通报, 2015, 31(27): 15-21.
doi: 10.11924/j.issn.1000-6850.casb15050179
MA Z H, KOU C L, KANG L Y.Influence of water supply and phosphorus application in different depth on yield and nutrient accumulation and distribution of winter wheat.Chinese Agricultural Science Bulletin, 2015, 31(27): 15-21. (in Chinese)
doi: 10.11924/j.issn.1000-6850.casb15050179
[7] LIU M Q, YU Z R, LIU Y H, KONIJN N T.Fertilizer requirements for wheat and maize in China: the QUEFTS approach.Nutrient Cycling in Agroecosystems, 2006, 74(3): 245-258.
doi: 10.1007/s10705-006-9002-5
[8] GIULIANI M M, GIUZIO L, CARO A D, FLAGELLA Z.Relationships between nitrogen utilization and grain technological quality in durum wheat: I. nitrogen translocation and nitrogen use efficiency for protein.Agronomy Journal, 2011, 103(5): 1487-1494.
doi: 10.2134/agronj2011.0153
[9] CHUAN L M, HE P, PAMPOLINO M F, JOHNSTON A M, JIN J Y, XU X P, ZHAO S C, QIU S J, ZHOU W.Establishing a scientific basis for fertilizer recommendations for wheat in China: Yield response and agronomic efficiency.Field Crops Research, 2013, 140(1): 1-8.
doi: 10.1016/j.fcr.2012.09.020
[10] HE P, LI S T, JIN J Y, WANG H T, LI C J, WANG, Y L, CUI R Z.Performance of an optimized nutrient management system for double-cropped wheat-maize rotations in North-Central China.Agronomy Journal, 2009, 101(6): 1489-1496.
doi: 10.2134/agronj2009.0099
[11] ZHANG H M, YANG X Y, HE X H, XU M G, HUANG S M, LIU H, WANG B R.Effect of long-term potassium fertilization on crop yield and potassium efficiency and balance under wheat-maize rotation in China.Pedosphere, 2011, 21(2): 154-163.
doi: 10.1016/S1002-0160(11)60113-6
[12] 党红凯, 李瑞奇, 李雁鸣, 孙亚辉, 张馨文, 刘梦星. 超高产冬小麦对氮素的吸收、积累和分配. 植物营养与肥料学报, 2013, 19(5): 1037-1047.
doi: 10.11674/zwyf.2013.0202
DANG H K, LI R Q, LI Y M, SUN Y H, ZHANG X W, LIU M X.Absorption, accumulation and distribution of nitrogen in super-highly yielding winter wheat.Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1037-1047. (in Chinese)
doi: 10.11674/zwyf.2013.0202
[13] 党红凯, 李瑞奇, 李雁鸣, 张馨文, 孙亚辉. 超高产栽培条件下冬小麦对磷的吸收、积累和分配. 植物营养与肥料学报, 2012, 18(3): 531-541.
doi: 10.11674/zwyf.2012.11361
DANG H K, LI R Q, LI Y M, ZHANG X W, SUN Y H.Absorption, accumulation and distribution of phosphorus in winter wheat under super-highly yielding conditions.Journal of Plant Nutrition and Fertilizer, 2012, 18(3): 531-541. (in Chinese)
doi: 10.11674/zwyf.2012.11361
[14] 党红凯, 李瑞奇, 李雁鸣, 孙亚辉, 张馨文, 孟建. 超高产冬小麦对钾的吸收、积累和分配. 植物营养与肥料学报, 2013, 19(2): 274-287.
doi: 10.11674/zwyf.2013.0202
DANG H K, LI R Q, LI Y M, SUN Y H, ZHANG X W, MENG J.Absorption, accumulation and distribution of potassium in super highly-yielding winter wheat.Journal of Plant Nutrition and Fertilizer, 2013, 19(2): 274-287. (in Chinese)
doi: 10.11674/zwyf.2013.0202
[15] FOWLER D B.Crop nitrogen demand and grain protein concentration of spring and winter wheat.Agronomy Journal, 2003, 95(2): 260-265.
doi: 10.2134/agronj2003.0260
[16] YUE S C, MENG Q F, ZHAO R F, YE Y L, ZHANG F S, CUI Z L, CHEN X P.Change in nitrogen requirement with increasing grain yield for winter wheat.Agronomy Journal, 2012, 104(6): 1687-1693.
doi: 10.2134/agronj2012.0232
[17] ZHAN A, CHEN X P, LI S Q, CUI Z L.Changes in phosphorus requirement with increasing grain yield for winter wheat.Agronomy Journal, 2015, 107(6): 2003-2010.
doi: 10.2134/agronj15.0089
[18] ZHAN A, ZOU C Q, YE Y L, LIU Z H, CUI Z L, CHEN X P.Estimating on-farm wheat yield response to potassium and potassium uptake requirement in China.Field Crops Research, 2016, 191: 13-19.
doi: 10.1016/j.fcr.2016.04.001
[19] 于振文, 田奇卓, 潘庆民, 岳寿松, 王东, 段藏禄, 段玲玲, 王志军, 牛运生. 黄淮麦区冬小麦超高产栽培的理论与实践. 作物学报, 2002, 28(5): 577-585.
doi: 10.3321/j.issn:1000-2421.2004.z1.021
YU Z W, TIAN Q Z, PAN Q M, YUE S S, WAGN D, DUAN Z L, DUAN L L, WANG Z J, NIU Y S.Theory and practice on cultivation of super high yield of winter wheat in the wheat fields of Yellow River and Huaihe River districts.Acta Agronomica Sinica, 2002, 28(5): 577-585. (in Chinese)
doi: 10.3321/j.issn:1000-2421.2004.z1.021
[20] 潘庆民, 于振文, 王月福, 田奇卓. 公顷产9000 kg小麦氮素吸收分配的研究. 作物学报, 1999, 25(5): 541-547.
PAN Q M, YU Z W, WANG Y F, TIAN Q Z.Studies on uptake and distribution of nitrogen in wheat at the level of 9000 kg per hectare.Acta Agronomica Sinica, 1999, 25(5): 541-547. (in Chinese)
[21] LIU X Y, HE P, JIN J Y, ZHOU W, SULEWSKI G, PHILLIPS S.Yield gaps, indigenous nutrient supply, and nutrient use efficiency of wheat in China.Agronomy Journal, 2011, 103(5): 1452-1463.
doi: 10.2134/agronj2010.0476
[22] 串丽敏. 基于产量反应和农学效率的小麦推荐施肥方法研究[D]. 北京: 中国农业科学院, 2013.
CHUAN L M.Methodology of fertilizer recommendation based on yield response and agronomic efficiency for wheat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[23] 车升国, 袁亮, 李燕婷, 林治安, 李燕青, 赵秉强, 沈兵. 我国主要麦区小麦产量形成对磷素的需求. 植物营养与肥料学报, 2016, 22(4): 869-876.
doi: 10.11674/zwyf.15202
CHE S G, YUAN L, LI Y T, LIN Z A, LI Y Q, ZHAO B Q, SHEN B.Phosphorous requirement for yield formation of wheat in main wheat production regions of China.Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 869-876. (in Chinese)
doi: 10.11674/zwyf.15202
[24] 张法全, 王小燕, 于振文, 王西芝, 白洪立. 公顷产10000 kg小麦氮素和干物质积累与分配特性. 作物学报, 2009, 35(6): 1086-1096.
doi: 10.3724/SP.J.1006.2009.01086
ZHANG F Q, WANG X Y, YU Z W, WANG X Z, BAI H L.Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare.Acta Agronomica Sinica, 2009, 35(6): 1086-1096. (in Chinese)
doi: 10.3724/SP.J.1006.2009.01086
[25] HU C X, WANG Y H.Variation among wheat varieties in characteristics of potassium uptake and distribution, and potassium nutrition efficiency.Journal of Huazhong Agricultural, 2000, 19(3): 233-239.
[26] 徐明杰, 董娴娴, 刘会玲, 张丽娟, 巨晓棠. 不同管理方式对小麦氮素吸收、分配及去向的影响. 植物营养与肥料学报, 2014, 20(5): 1084-1093.
doi: 10.11674/zwyf.2014.0504
XU M J, DONG X X, LIU H L, ZHANG L J, JU X T.Effects of different management patterns on uptake, distribution and fate of nitrogen in wheat.Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1084-1093. (in Chinese)
doi: 10.11674/zwyf.2014.0504
[27] MENG Q F, YUE S C, CHEN X P, CUI Z L, YE Y L, MA W Q, TONG Y A, ZHANG F S.Understanding dry matter and nitrogen accumulation with time-course for high-yielding wheat production in China.Plos One, 2013, 8(7): e68783.
doi: 10.1371/journal.pone.0068783 pmid: 23874762
[28] BOATWRIGHT G O, HAAS H J.Development and composition of spring wheat as influenced by nitrogen and phosphorus fertilization.Agronomy Journal, 1961, 53(1): 33-36.
doi: 10.2134/agronj1961.00021962005300010012x
[29] XU Z Z, YU Z W, ZHAO J Y.Theory and application for the promotion of wheat production in China: past, present and future.Journal of the Science of Food and Agriculture, 2013, 93(10): 2339-2350.
doi: 10.1002/jsfa.6098 pmid: 23408419
[30] YE Y L, WANG G L, HUANG Y F, ZHU Y J, MENG Q F, CHEN X P,ZHANG F S, CUI Z L.Understanding physiological processes associated with yield-trait relationships in modern wheat varieties.Field Crops Research, 2011, 124(3): 316-322.
doi: 10.1016/j.fcr.2011.06.023
[31] ARISNABARRETA S, MIRALLES D J.Critical period for grain number establishment of near isogenic lines of two- and six-rowed barley.Field Crops Research, 2008, 107(3): 196-202.
doi: 10.1016/j.fcr.2008.02.009
[32] REYNOLDS M P, PELLEGRINESCHI A, SKOVMAND B.Sink- limitation to yield and biomass: a summary of some investigations in spring wheat.Annals of Applied Biology, 2005, 146(1): 39-49.
doi: 10.1111/j.1744-7348.2005.03100.x
[1] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[2] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[3] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[4] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[5] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[6] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[7] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[8] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[9] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[10] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[11] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[12] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[13] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[14] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[15] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!