Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (12): 2235-2247.doi: 10.3864/j.issn.0578-1752.2018.12.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening Method for Salt Tolerance in Sesame (Sesamum indicum L.) and Identification of Candidate Salt-tolerant Genes

ZHANG YuJuan1,2, YOU Jun1, LIU AiLi 1, LI DongHua1, YU JingYin1, WANG YanYan1ZHOU Rong1, GONG HuiHui2, ZHANG XiuRong1   

  1. 1Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062; 2Cotton Research Center, Shandong                         Academy of Agricultural Sciences, Jinan 250100
  • Received:2018-02-06 Online:2018-06-16 Published:2018-06-16

Abstract: 【Objective】In order to evaluate salt tolerance of sesame germplasms and reveal the genetic basis of salt tolerance in sesame at the germination stage, optimum NaCl concentration and best salt tolerance indexes were determined, salt-tolerant sesame genotypes as well as candidate genes were identified in this study. 【Method】 Eight sesame genotypes with different salt tolerance were germinated under different NaCl concentrations (0, 50, 100, 150, 200 and 250 mmol·L-1 ). Seven germination indexes including germination potential, germination index, vigor index, seedling rate, radicle length, embryo length and fresh weight of seedling were measured. The optimum NaCl concentration and salt tolerance indexes of sesame were determined using variance analysis, principal component analysis, membership function and correlation analysis based on the relative values of multiple indexes. In addition, genome-wide association analysis (GWAS) of salt tolerance related trait in 71 sesame germplasms was performed to find the SNP loci and candidate genes related to salt tolerance in sesame. Gene function annotation, transcriptome analyses and real-time quantitative reverse transcriptase PCR (qRT-PCR) were used to identify important candidate genes involved in salt tolerance. 【Result】The larger standard value deviations of germination indexes were observed at 100 mmol·L-1 NaCl concentration, implying that 100 mmol·L-1 is the optimum NaCl concentration for salt-tolerance screening in this study. The seven indexes were highly correlated with salt tolerance at germination stage, suggesting that, these indexes could be targeted for effective screening of salt-tolerance in large sesame germplasm. The genome-wide association analysis identified 7 SNP loci peaks (LG5:688003, LG7:9582027, LG10:5274091, LG10:10788493, LG11:11924186, LG14:2128695 and LG16:3930301) significantly associated with salt tolerance and 34 functional candidate genes. The transcriptome analysis and qRT-PCR showed that 21 candidate genes respond strongly to salt stress.【Conclusion】In this study, 100 mmol·L-1 is the optimum NaCl concentration for salt-tolerance screening and seven indexes including relative seedling rate could be targeted for effective screening of salt-tolerance in large sesame germplasm. In addition, 7 SNP loci peaks significantly associated with salt tolerance were identified and 21 candidate salt-tolerant genes were discovered.

Key words: sesame, salt tolerance, genome-wide association study, salt-tolerant genes

[1]    杨真, 王宝山. 中国盐渍土资源现状及改良利用对策. 山东农业科学, 2015,47(4): 125-130.
YANG Z, WANG B S. Present status of saline soil resources and countermeasures for improvement and utilization in China. Shandong Agricultural Sciences, 2015, 47(4):125-130. (in Chinese)
[2]    冯琛, 党高兵, 解建仓, 孙博, 汪妮. 大米草玉米的耐盐效果及对盐渍化土壤的改良试验. 水土保持通报, 2011, 31(6): 47-50.
FENG C, DANG G B, XIE J C, SUN B, WANG, N. Salt-tolerant effect of rice grass-maize and improvement on saline soil. Bulletin of Soil & Water Conservation, 2011, 31(6): 47-50. (in Chinese)
[3]    张鸿, 林静, 王立成, 王阳, 何威, 李卫华. 春小麦种质资源耐盐性鉴定及筛选. 种子, 2014, 33(6): 53-57.
ZHANG H, LIN J, WANG L C, WANG Y, HE W, LI W H. The identification and screening of salt tolerance of spring wheat germplasm resources. Seed, 2014, 33(6): 53-57. (in Chinese)
[4]    田蕾, 陈亚萍, 刘俊, 马晓刚, 王娜, 杨兵, 李莹, 郭海东, 李娟, 胡慧, 张银霞, 李培富. 粳稻种质资源芽期耐盐性综合评价与筛选. 中国水稻科学, 2017, 31(6): 631-642.
TIAN L, CHEN Y P, LIU J, MA X G, WANG N, YANG B, LI Y, GUO H D, LI J, HU H, ZHANG Y X, LI P F. Comprehensive evaluation and selection of rice (Oryza sativa japonica) germplasm for saline tolerance at germination stage. Chinese Journal of Rice Science, 2017, 31(6): 631-642. (in Chinese)
[5]    张海艳, 赵海军. 不同品种玉米萌发期和苗期耐盐性综合评价. 玉米科学, 2016, 24(5): 61-67.
ZHANG H Y, ZHAO H J. Comprehensive evaluation of salt tolerance of different corn varieties at the germination and seedling stages. Journal of Maize Sciences, 2016, 24(5): 61-67. (in Chinese)
[6]    王俊娟, 樊伟莉, 叶武威, 王德龙. 陆地棉萌发出苗期耐盐鉴定方法的研究及应用. 江苏农业科学, 2010(2): 87-88.
WANG J J, FAN W L, YE W W, WANG D L. The research and application of the method of salt tolerance on upland cotton at the germination and seedling stages. Jiangsu Agricultural Sciences, 2010(2): 87-88. (in Chinese)
[7]    沈义国, 陈受宜. 植物盐胁迫应答的分子机制. 遗传, 2001, 23(4): 365-369.
SHEN Y G, CHEN S Y. Molecular mechanism of plant responses to salt stress. Hereditas, 2001, 23(4): 365-369. (in Chinese)
[8]    ZHU J K. Cell signaling under salt, water and cold stresses. Current Opinion in Plant Biology, 2001, 4(5): 401-406.
[9]    XU Y, LI S, LI L, ZHANG X, XU H, AN D. Mapping QTLs for salt tolerance with additive, epistatic and QTL×treatment interaction effects at seedling stage in wheat. Plant Breeding, 2013, 132(3): 276-283.
[10]   YU L X, LIU X, BOGE W, LIU X P. Genome-wide association study identifies loci for salt tolerance during germination in Autotetraploid alfalfa (Medicago sativa L.) using genotyping-by-sequencing. Frontiers in Plant Science, 2016, 7: 956.
[11]   KOBAYASHI Y, SADUKHAN A, TAZIB T, NAKANOY, KUSUNOKI K, KAMARA M, CHAFFAI R, IUCHI S, SAHOO L, KOBAYASHI M, HOEKENGA OA, KOYAMA H. Joint genetic and network analyses identify loci associated with root growth under NaCl stress in Arabidopsis thaliana. Plant Cell & Environment, 2016, 39(4): 918-934.
[12]   DHINGRA A, DANIELL H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiology, 2004, 136(1): 2843-2854.
[13]   HMIDASAYARI A, GARGOURIBOUZID R, BIDANI A, JAOUA L, SAVOURE A, JAOUA S. Overexpression of delta¹-pyrroline-5- carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Science, 2005, 169(4): 746-752.
[14]   QIAO W H, ZHAO X Y, LI W, LUO Y, ZHANG X S. Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Reports, 2007, 26(9): 1663-1672.
[15]   陈凤莲, 刘志斌, 王健美, 李旭锋, 杨毅. 油菜BnRCH基因提高转基因拟南芥的耐盐性研究. 四川大学学报(自然科学版), 2013, 50(3): 643-648.
CHEN F L, LIU Z B, WANG J M, LI X F, YANG Y. The studies of gene BnRCH from Brassica napus enhances the tolerance to salt stress in transgenic Arabidopsis. Journal of Sichuan University (Natural Science), 2013, 50(3): 643-648. (in Chinese)
[16]   JING P, ZOU J, KONG L, HU S, WANG B, YANG J, XIE G. OsCCD1, a novel small calcium-binding protein with one EF-hand motif, positively regulates osmotic and salt tolerance in rice. Plant Science, 2016, 247: 104-14.
[17]   孙建, 乐美旺, 饶月亮, 颜廷献, 颜小文, 周红英. 芽期NaCl胁迫下不同基因型芝麻的反应差异研究. 干旱地区农业研究, 2014, 32(6): 75-81.
SUN J, LE M W, RAO Y L, YAN T X, YAN X W, ZHOU H Y. Genotypic variation in sesame salt tolerance during germination under nacl stress. Agricultural Research in the Arid Areas, 2014, 32(6): 75-81. (in Chinese)
[18]   徐芬芬, 杜佳朋. 干旱胁迫和盐胁迫对芝麻种子萌发的影响. 种子, 2013, 32(11): 85-86.
XU F F, DU J P. Effect of drought and salt stress on seed germination of sesame. Seed, 2013, 32(11): 85-86. (in Chinese)
[19]   DIAS A S, LIMA G S D, GHEYI H R, NOBRE R G, SANTOS J B D. Emergence, growth and production of sesame under salt stress and proportions of nitrate and ammonium. Revista Caatinga, 2017, 30(2): 458-467.
[20]   FARISSI M, BOUIZGAREN A, FAGHIRE M, BARGAZ A, GHOULAM C. Agro-physiological and biochemical properties associated with adaptation of Medicago sativa populations to water deficit. Doga Turkish Journal of Botany, 2013, 37(6): 1166-1175.
[21]   吴兰荣, 陈静, 许婷婷, 苗华荣, 胡文广, 禹山林. 花生全生育期耐盐鉴定研究. 花生学报, 2005(1): 20-24.
WU L R, CHEN J, XU T T, MIAO H R, HU W G, YU S L. Identification of salt tolerance in peanut growth duration. Journal of Peanut Science, 2005(1): 20-24. (in Chinese)
[22]   支巨振, 毕辛华, 杜克敏, 常秀兰, 杨淑惠, 任淑萍, 吴志行, 李仁凤, 赵菊英. GB/T 3543.4-1995, 农作物种子检验规程 发芽试验. 北京:中国标准出版社, 1995.
ZHI J Z, BI X H, DU K M, CHANG X L,YANG S H, REN S P, WU Z H, LI R F, ZHAO J Y. GB/T 3543.4-1995, Rules for agricultural seed testing-Germination test. Beijing: China Standard Press, 1995. (in Chinese)
[23]   刘文萍, 吕伟, 黎冬华, 任果香, 张艳欣, 文飞, 韩俊梅, 张秀荣. 芝麻种质资源成株期抗旱性关联分析. 中国农业科学, 2017, 50(4): 625-639.
LIU W P , LÜ W, LI D H, REN G X, ZHANG Y X, WEN F, HAN J M, ZHANG X R. Drought resistance of sesame germplasm resources and association analysis at adult stage. Scientia Agricultura Sinica, 2017, 50(4): 625-639. (in Chinese)
[24]   WEI X, LIU K, ZHANG Y, FENG Q, WANG L, ZHAO Y, LI D, ZHAO Q, ZHU X, ZHU X, LI W, FAN D, GAO Y, LU Y, ZHANG X, TANG X, ZHOU C, ZHU C, LIU L, ZHONG R, TIAN Q, WEN Z, WENG Q, HAN B, HUANG X, ZHANG X. Genetic discovery for oil production and quality in sesame. Nature Communications, 2015, 6: 8609.
[25]   BRADBURY P J, ZHANG Z, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCKLER E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19): 2633-2635.
[26]   WEI L, MIAO H, ZHAO R, HAN X, ZHANG T, ZHANG H. Identification and testing of reference genes for Sesame gene expression analysis by quantitative real-time PCR. Planta, 2013, 237(3): 873-889.
[27]   SÉNÉCHAL F, WATTIER C, RUSTÉRUCCI C, PELLOUX J. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. Journal of Experimental Botany, 2014, 65(18): 5125.
[28]   Orozcocárdenas M, Narváezvásquez J, Ryan C. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. The Plant Cell, 2001, 13(1): 179-191.
[29]   寇晓虹. 番茄多聚半乳糖醛酸酶(PG)反义基因表达及相关功能研究[D]. 北京: 中国农业大学, 2003.
KOU X H. Antisense gene expression and gene function of polygalacturonase (PG) in tomato[D]. Beijing: China Agricultural University, 2003. (in Chinese)
[30]   O’DONNELL P J, TRUESDALE M R, CALVERT C M, DORANS A, ROBERTS M R, BOWLES D J. A novel tomato gene that rapidly responds to wound- and pathogen-related signals. The Plant Journal, 1998, 14(1): 137-142.
[31]   Roberts M R, Warner S A J, Darby R, Lim E K, Draper J, Bowles D J. Differential regulation of a glucosyl transferase gene homologue during defence responses in tobacco. Journal of Experimental Botany, 1999, 50(332): 407-410.
[32]   李莹, 柳参奎. 红素氧还蛋白研究进展. 草业科学, 2016, 33(6): 1118-1125.
LI Y, LIU S K. research progress on rubredoxin. Pratacultural science, 2016, 33(6): 1118-1125. (in Chinese)
[33]   林凡云, 陆琼娴, 徐剑宏, 史建荣. 两个与盐和赤霉病菌胁迫相关的小麦糖基转移酶基因的克隆与表达. 遗传, 2008, 30(12): 1608-1614.
LIN F Y, LU Q X, XU J H, SHI J R. Cloning and expression analysis of two salt and Fusarium graminearum stress associated UDP- glucosyltransferases genes in wheat. Hereditas, 2008, 30(12): 1608-1614.(in Chinese)
[34]   ZHU J, FU X, KOO Y D, ZHU J K, FRANCIS E J J, MICHAEL W W A, ZHU Y, SHI H, YUN D J, HASEGAWA P M, BRESSAN R A. An enhancer mutant of arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Molecular & Cellular Biology, 2007, 27(14): 5214.
[35]   SAMANANI N, LISCOMBE D K, FACCHINI P J. Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. The Plant Journal, 2004, 40(2): 302-313.
[1] JU Ming, MIAO HongMei, HUANG YingYing, MA Qin, WANG HuiLi, WANG CuiYing, DUAN YingHui, HAN XiuHua, ZHANG HaiYang. Analysis of Cross Compatibility Variation Among Diverse Sesamum Species and Biological Characteristics of the Interspecific Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(20): 3897-3909.
[2] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[3] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[4] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[5] BIAN LanXing,LIANG LiKun,YAN Kun,SU HongYan,LI LiXia,DONG XiaoYan,MEI HuiMin. Effects of Trichoderma on Root and Leaf Ionic Homeostasis and Photosystem II in Chinese Wolfberry Under Salt Stress [J]. Scientia Agricultura Sinica, 2022, 55(12): 2413-2424.
[6] MENG Rui,LIU Ye,ZHAO Shuang,FANG WeiMin,JIANG JiaFu,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Effects of Rootstock and Scion Interaction on Salt Tolerance of Grafted Chrysanthemum Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(3): 629-642.
[7] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[8] ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286.
[9] LIU AiLi,WEI MengYuan,LI DongHua,ZHOU Rong,ZHANG XiuRong,YOU Jun. Cloning and Function Analysis of Sesame Galactinol Synthase Gene SiGolS6 in Arabidopsis [J]. Scientia Agricultura Sinica, 2020, 53(17): 3432-3442.
[10] ZHANG JiFeng,LIU HuaDong,WANG JingGuo,LIU HuaLong,SUN Jian,YANG LuoMiao,JIA Yan,WU WenShen,ZHENG HongLiang,ZOU DeTang. Genome-Wide Association Study and Candidate Gene Mining of Tillering Number in Japonica Rice [J]. Scientia Agricultura Sinica, 2020, 53(16): 3205-3213.
[11] LI Jie,JIA XuChao,ZHANG RuiFen,LIU Lei,CHI JianWei,HUANG Fei,DONG LiHong,ZHANG MingWei. Isolation, Structural Characterization and Antioxidant Activity of Black Sesame Melanin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2477-2492.
[12] HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132.
[13] SUN Jian,YAN XiaoWen,LE MeiWang,RAO YueLiang,YAN TingXian,YE YanYing,ZHOU HongYing. Physiological Response Mechanism of Drought Stress in Different Drought-Tolerance Genotypes of Sesame During Flowering Period [J]. Scientia Agricultura Sinica, 2019, 52(7): 1215-1226.
[14] LI XiaoBo,LI Zhen,DAI ShaoJun,PAN JiaoWen,WANG QingGuo,GUAN YanAn,DING GuoHua,LIU Wei. Response of Receptor-Like Protein Kinase Gene SiRLK35 of Foxtail Millet to Salt in Heterologous Transgenic Rice [J]. Scientia Agricultura Sinica, 2019, 52(22): 3976-3986.
[15] ZHANG Fei,WANG YanQiu,ZHU Kai,ZHANG ZhiPeng,ZHU ZhenXing,LU Feng,ZOU JianQiu. Comparative Transcriptome Analysis of Different Salt Tolerance Sorghum (Sorghum bicolor L. Moench) Under Salt Stress [J]. Scientia Agricultura Sinica, 2019, 52(22): 4002-4015.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!