Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (17): 3432-3442.doi: 10.3864/j.issn.0578-1752.2020.17.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Function Analysis of Sesame Galactinol Synthase Gene SiGolS6 in Arabidopsis

LIU AiLi(),WEI MengYuan,LI DongHua,ZHOU Rong,ZHANG XiuRong,YOU Jun()   

  1. Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062
  • Received:2019-12-30 Accepted:2020-03-08 Online:2020-09-01 Published:2020-09-11
  • Contact: Jun YOU E-mail:liuailihappy@126.com;junyou@caas.cn

Abstract:

【Objective】SiGolS6 is a member of galactinol synthase family in sesame, which may play important role in drought stress resistance. Studying the function of SiGolS6 in plant drought stress resistance, so as to provide theoretical basis and gene resources for drought resistance improvement of sesame. 【Method】The galactinol synthase gene, SiGolS6, was isolated from sesame through reverse transcription PCR (RT-PCR). The sequence was analyzed by bioinformatics tools such as InterProScan, ClustalX2 and MEGA5.2. Then the function of SiGolS6 in plant drought resistance was characterized by phenotype analysis and physiological index measurement of SiGolS6 transgenic Arabidopsis thaliana. 【Result】The total length of the CDS sequence of SiGolS6 was 921 bp, encoding a polypeptide of 306 amino acids. The molecular weight of SiGolS6 is 35.07 kD and its isoelectric point is 4.7. Sequence analysis showed that SiGolS6 protein contained conserved glycosyl transferase domain (IPR002495), belonging to the glycosyl transferase superfamily. Based on phylogenetic tree constructed with GolS proteins from sesame and other species, SiGolS6 was highly similar to the homologous genes in potato. Six independent transgenic Arabidopsis thaliana lines were identified by hygromycin screening and PCR. Three transgenic lines (OE-2, OE-3, and OE-4) with high expression levels were identified by qRT-PCR, and used for subsequent experiment. Raffinose content in those transgenic plants was higher than that in wild-type (WT) plants. Under drought stress, the wilting degree of transgenic lines was less than that of WT lines. After 28 d of drought stress and 5 d of recovery, the fresh weight of transgenic lines was significantly higher than that of WT, but there was no significant difference under normal conditions. After 5 d of recovery, 50% of transgenic plants recovered, while the survival rate of WT was less than 10%. After 21 d of drought stress, the relative electrical conductivity, ROS accumulation and MDA content of transgenic plants were significantly lower than those of WT, while the relative activities of SOD and POD were significantly higher than those of WT.【Conclusion】Overexpression of SiGolS6 in Arabidopsis thaliana could improve the drought tolerance of transgenic plant.

Key words: sesame, galactinol synthase, transgenic Arabidopsis, drought tolerance, functional analysis

Table 1

The primers used in the study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
SiGolS6q-F CCAATCCCCGCAACCTATAAC
SiGolS6q-R TGCTCTTTGTCGGTGTACTTC
Actinq-F CCCGCTATGTATGTCGCCA
Actinq-R AACCCTCGTAGATTGGCACAG
GolS6FL-F GGGGTACCATGGTTCCTGAAATTATCATTCC
GolS6FL-R CGGGATCCTCAACCGGAAACTTGATCAATTG

Fig. 1

Multiple sequence alignment (A) and phylogenetic analysis (B) of SiGolS6 and its homologs"

Fig. 2

Acquisition and identification of transgenic Arabidopsis A, B: Transgenic (A) and wild type (B) plants growing on selective medium containing hygromycin; C: Identification of positive T2 generation transgenic Arabidopsis plants; 1-6: SiGolS6 transgenic lines; WT: Wild type; D: Transcript level of SiGolS6 in transgenic Arabidopsis plants. * indicate significant difference at P<0.05 level; **indicates significant difference at P<0.01 level. The same as below"

Fig. 3

Raffinose content in transgenic Arabidopsis plants"

Fig. 4

Characteristics of transgenic plants under drought stress A: Phenotype of WT and transgenic plants under drought stress; B: Water loss from detached leaves of WT and transgenic plants at indicated time points; C: Survival rate of WT and transgenic plants after drought stress; D-E: Fresh weight (D) and relative electrical conductivity (E) of WT and transgenic plants after drought stress"

Fig. 5

Determination of oxidation-related physiological indexes in transgenic Arabidopsis plants A: Nitro blue tetrazolium staining of leaves from WT and transgenic plants under normal or drought treatments; B-D: Relative content of MDA (B), relative activity of SOD (C) and relative activity of POD (D) of WT and transgenic plants after drought stress"

[1] 武新娟. 马铃薯不同品种的抗旱性评价及Fe-SOD基因的研究[D]. 哈尔滨: 东北农业大学, 2008.
WU X J. Evaluation of drought tolerance and clone of gene Fe-SOD in potato varieties[D]. Harbin: Northeast Agricultural University, 2008. (in Chinese)
[2] 王林海, 张艳欣, 危文亮, 张秀荣. 中国芝麻湿害和旱害发生调查与分析. 中国农学通报, 2011,27(28):301-306.
WANG L H, ZHANG Y X, WEI W L, ZHANG X R. Investment of waterlogging and drought effect on the sesame production in China. Chinese Agricultural Science Bulletin, 2011,27(28):301-306. (in Chinese)
[3] 范洁. 木薯肌醇半乳糖苷合成酶基因MeGolS5的抗旱功能研究[D]. 海口: 海南大学, 2015.
FAN J. Functional characterization involved in drought stress of galactinol synthase gene MeGolS5 from Manihot esculenta Crantz[D]. Haikou: Hainan University, 2015. (in Chinese)
[4] 李芳, 汪晓峰. 植物中棉子糖系列寡糖代谢及其调控关键酶研究进展. 西北植物学报, 2008,28(4):4852-4859.
LI F, WANG X F. Advance in raffinose family oligosaccharides metabolism and the key enzymes in plants. Acta Botanica Boreali- Occidentalia Sinica, 2008,28(4):4852-4859. (in Chinese)
[5] HORBOWICZ M, OBENDORF R L. Seed desiccation tolerance and storability: Dependence on flatulence-producing oligosaccharides and cyclitols-review and survey. Seed Science Research, 1994,4(4):385-405.
[6] MUZQUIZ M, BURBANO C, PEDROSA M M, FOLKMAN W, GULEWICZ K. Lupins as a potential source of raffinose family oligosaccharides. Industrial Crops and Products, 1998,9(3):183-188.
[7] 林世锋, 王仁刚, 任学良, 王东茂, 张拓, 黄亚娟. 烟草肌醇半乳糖苷合成酶基因NtGolS1的克隆及序列分析. 东北农业大学学报, 2012,43(7):113-118.
LIN S F, WANG R G, REN X L, WANG D M, ZHANG T, HUANG Y J. Cloning and sequence analysis of a galactinol synthase gene NtGolS1 in tobacco (Nicotiana tabacum). Journal of Northeast Agricultural University, 2012,43(7):113-118. (in Chinese)
[8] 王毅, 肖良俊, 马婷, 宁德鲁. 泡核桃肌醇半乳糖苷合成酶基因克隆及表达分析. 基因组学与应用生物学, 2018,37(5):2029-2033.
WANG Y, XIAO L J, MA T, NING D L. Cloning and expression analysis of inositol galactinol synthase gene in Juglans sigillata. Genomics and Applied Biology, 2018,37(5):2029-2033. (in Chinese)
[9] DOWNIE B, GURUSINGHE S, DAHAL P, THACKER R R, SNYDER J C, NONOGAKI H, YIM K, FUKANAGA K, ALVARADO V AND KENT J. Bradford expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiology, 2003,131(3):1347-1359.
pmid: 12644684
[10] CUNNINGHAM S M, NADEAU P, CASTONGUAY Y, LABERGE S, VOLENEC J. Raffinose and stachyose accumulation, galactinol synthase expression, and winter injury of contrasting alfalfa germplasms. Crop Science, 2003,43(2):562-570.
doi: 10.2135/cropsci2003.0562
[11] 缪旻珉, 李娜, 任旭琴, 张宗东, 程皓, 曹碚生. 一个辣椒肌醇半乳糖苷合成酶同源基因全长cDNA的克隆与低温表达分析. 园艺学报, 2008(11):1671-1675.
MIAO M M, LI N, REN X Q, ZHANG Z D, CHENG H, CAO B S. Cloning, characterization and expression of a putative galactinol synthase gene from cold stressed pepper (Capsicum annuum L.). Acta Horticulturae Sinica, 2008(11):1671-1675. (in Chinese)
[12] 李涛. 棉子糖系列寡糖(RFOs)在玉米与拟南芥植株抗旱及种子活力中的功能研究[D]. 杨凌: 西北农林科技大学, 2017.
LI T. The function of raffinose family oligosaccharides in plant drought stress tolerance and seed vigor of maize and Arabidopsis[D]. Yangling: Northwest A&F University, 2017. (in Chinese)
[13] SARAVITZ D M, PHARR D M, CARTER T E. Galactinol synthase activity and soluble sugars in developing seeds of four soybean genotypes. Plant Physiology, 1987,83:185-189.
doi: 10.1104/pp.83.1.185 pmid: 16665199
[14] TAJI T, OHSUMI C, IUCHI S, SEKI M, KASUGA M, KOBAYASHI M, SHINOZAKI K Y, SHINOZAKI K. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal, 2002,29(4):10.
[15] HIMURO Y, ISHIYAMA K, MORI F, GONDO T, TAKAHASHI F, SHINOZAKI K, KOBAYASHI M, AKASHI R. Arabidopsis galactinol synthase AtGolS2 improves drought tolerance in the monocot model Brachypodium distachyon. Journal of Plant Physiology, 2014,171(13):1127-1131.
doi: 10.1016/j.jplph.2014.04.007 pmid: 24973584
[16] 范洁, 王雨晴, 李瑞梅, 张帆, 段瑞军, 符少萍, 刘姣, 胡新文, 郭建春. 木薯中肌醇半乳糖苷合成酶基因在大肠杆菌中的表达. 分子植物育种, 2015,13(5):1027-1032.
FAN J, WANG Y Q, LI R M, ZHANG F, DUAN R J, FU S P, LIU J, HU X W, GUO J C. Expression of recombinant galactinol synthase of Manihot esculenta Grantz in Escherichia coli. Molecular Plant Breeding, 2015,13(5):1027-1032. (in Chinese)
[17] WANG Z, ZHU Y, WANG L L, LIU X, LIU Y X, PHILLIPS J, DENG X. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter. Planta, 2009,230(6):1155-1166.
doi: 10.1007/s00425-009-1014-3
[18] GU L, ZHANG Y, ZHANG M, LI T, DIRK L M A, DOWNIE B, ZHAO T Y. ZmGOLS2, a target of transcription factor ZmDREB2A, offers similar protection against abiotic stress as ZmDREB2A. Plant Molecular Biology, 2016,90(1/2):157-170.
doi: 10.1007/s11103-015-0403-1
[19] YOU J, WANG Y Y, ZHANG Y J, DOSSA K, LI D H, ZHOU R, WANG L H, ZHANG X R. Genome-wide identification and expression analyses of genes involved in raffinose accumulation in sesame. Scientific Reports, 2018,8(1):4331.
doi: 10.1038/s41598-018-22585-2 pmid: 29531231
[20] 肖本泽. 抗旱候选基因和启动子的水稻遗传转化分析和田间抗旱性鉴定[D]. 武汉: 华中农业大学, 2007.
XIAO B Z. Transformation study and field testing of candidate genes and promoters for drought resistance in rice[D]. Wuhan: Huazhong Agricultural University, 2007. (in Chinese)
[21] TAMURA K, PETERSON D, PETERSON N, STECHER G, NEI M, KUMAR S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011,28:2731-2739
doi: 10.1093/molbev/msr121 pmid: 21546353
[22] 刘慧娟, 冯志国, 李先文, 李涛, 何光源. 采用农杆菌花序浸染法获得转crtB基因拟南芥. 湖北农业科学, 2013,52(1):200-202.
LIU H J, FENG Z G, LI X W, LI T, HE G Y. Obtaining crtB transgenic Arabidopsis thaliana by agrobacterium tumefaciens-floral dip method. Hubei Agricultural Sciences, 2013,52(1):200-202. (in Chinese)
[23] 周瑢, 刘盼, 黎冬华, 张艳欣, 王林海, 张秀荣, 魏鑫. 芝麻硬脂酸脱饱和酶基因SiSAD的克隆及功能验证.中国农业科学, 中国农业科学, 2019,52(10):1678-1685.
ZHOU R, LIU P, LI D H, ZHANG Y X, WANG L H, ZHANG X R, WEI X. Cloning and Functional Characterization of Sesame SiSAD Gene. Scientia Agricultura Sinica, 2019,52(10):1678-1685. (in Chinese)
[24] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[25] 陈建勋, 王晓峰. 植物生理学实验指导. 第二版. 广州: 华南理工大学出版社, 2006: 64-66.
CHEN J X, WANG X F. Experimental Guide for Plant Physiology. 2nd ed. Guangzhou: South China University of Technology Press, 2006: 64-66. (in Chinese)
[26] FOLGADO R, PANIS B, SERGEANT K, RENAUT J, SWENNEN R, HAUSMAN J F. Unravelling the effect of sucrose and cold pretreatment on cryopreservation of potato through sugar analysis and proteomics. Cryobiology, 2015,71(3):432-441.
doi: 10.1016/j.cryobiol.2015.09.006 pmid: 26408853
[27] SAITO M, YOSHIDA M. Expression analysis of the gene family associated with raffinose accumulation in rice seedlings under cold stress. Journal of Plant Physiology, 2011,168(18):2268-2271.
doi: 10.1016/j.jplph.2011.07.002 pmid: 21824678
[28] ZHOU M L, ZHANG Q, ZHOU M, SUN Z M, ZHU X M, SHAO J R, TANG Y X, WU Y M. Genome-wide identification of genes involved in raffinose metabolism in maize. Glycobiology, 2012,22(12):1775-1785.
doi: 10.1093/glycob/cws121 pmid: 22879458
[29] ZHOU J, YANG Y, YU J, WANG L K, YU X, OHTANI M, KUSANO M, SAITO K, DEMURA T, ZHUGE Q. Responses of Populus trichocarpa galactinol synthase genes to abiotic stresses. Journal of Plant Research, 2014,127(2):347-358.
doi: 10.1007/s10265-013-0597-8 pmid: 24190064
[30] NISHIZAWA A, YABUTA Y, SHIGEOKA S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiology, 2008,147(3):1251-1263.
doi: 10.1104/pp.108.122465 pmid: 18502973
[31] SELVARAJ M G, TAKUMA ISHIZAKI T, VALENCIA M, OGAWA S, DEDICOVA B, OGATA T, YOSHIWARA K, MARUYAMA K, KUSANO M, SAITO K, TAKAHASHI F, SHINOZAKI K, NAKASHIMA K, ISHITANI M. Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field. Plant Biotechnology Journal, 2017,15(11):1465-1477.
doi: 10.1111/pbi.12731 pmid: 28378532
[32] 左静. 梅花肌醇半乳糖苷和棉子糖合成酶基因的克隆与功能初探[D]. 武汉: 华中农业大学, 2017.
ZUO J. Cloning and functional analysis of galactinol and raffinose synthase genes in Prunus mume[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese)
[33] THOMAS P, ANDREAS R. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Science Research, 2001,11(3):185-197.
[34] YOU J, CHAN Z. ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 2015,6:1092.
doi: 10.3389/fpls.2015.01092 pmid: 26697045
[35] NISHIZAWA A, YABUTA Y, SHIGEOKA S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiological, 2008,147(3):1251-1263.
doi: 10.1104/pp.108.122465
[36] VAN DEN ENDE W. Multifunctional fructans and raffinose family oligosaccharides. Frontiers in Plant Science, 2013,4:247.
doi: 10.3389/fpls.2013.00247 pmid: 23882273
[37] SALVI P, KAMBLE N U, MAJEE M. Stress-inducible galactinol synthase of chickpea (CaGolS) is Implicated in heat and oxidative stress tolerance through reducing stress-induced excessive reactive oxygen species accumulation. Plant Cell Physiological, 2018,59(1):155-166.
[38] CUI L H, BYUN M Y, OH H G, KIM S J, LEE J, PARK H, LEE H, KIM W T. Poaceae type II galactinol synthase 2 from Antarctic flowering plant Deschampsia antarctica and rice improves cold and drought tolerance by accumulation of raffinose family oligosaccharides in transgenic rice plants. Plant Cell Physiological, 2020,61(1):88-104.
[1] JU Ming, MIAO HongMei, HUANG YingYing, MA Qin, WANG HuiLi, WANG CuiYing, DUAN YingHui, HAN XiuHua, ZHANG HaiYang. Analysis of Cross Compatibility Variation Among Diverse Sesamum Species and Biological Characteristics of the Interspecific Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(20): 3897-3909.
[2] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[3] ZHANG ChunXiao,LI ShuFang,LIU XuYang,LIU Jie,LIU WenPing,LIU XueYan,LI ChunHui,WANG TianYu,LI XiaoHui. Establishment of Evaluation System for Drought Tolerance at Maize Germination Stage Under Soil Stress [J]. Scientia Agricultura Sinica, 2020, 53(19): 3867-3877.
[4] WAN HuaFang,WEI Shuai,FENG YuXia,QIAN Wei. Creating a New-Type Brassica napus (AnArCnCo) with High Drought-resistance Employing Hexaploid (AnAnCnCnCoCo) as a Bridge [J]. Scientia Agricultura Sinica, 2020, 53(16): 3225-3234.
[5] LI Jie,JIA XuChao,ZHANG RuiFen,LIU Lei,CHI JianWei,HUANG Fei,DONG LiHong,ZHANG MingWei. Isolation, Structural Characterization and Antioxidant Activity of Black Sesame Melanin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2477-2492.
[6] SUN Jian,YAN XiaoWen,LE MeiWang,RAO YueLiang,YAN TingXian,YE YanYing,ZHOU HongYing. Physiological Response Mechanism of Drought Stress in Different Drought-Tolerance Genotypes of Sesame During Flowering Period [J]. Scientia Agricultura Sinica, 2019, 52(7): 1215-1226.
[7] DIAO XianMin. Progresses in Stress Tolerance and Field Cultivation Studies of Orphan Cereals in China [J]. Scientia Agricultura Sinica, 2019, 52(22): 3943-3949.
[8] ZHOU Rong,LIU Pan,LI DongHua,ZHANG YanXin,WANG LinHai,ZHANG XiuRong,WEI Xin. Cloning and Functional Characterization of Sesame SiSAD Gene [J]. Scientia Agricultura Sinica, 2019, 52(10): 1678-1685.
[9] LIU YuFei,JIN JiQiang,YAO MingZhe,CHEN Liang. Screening, Cloning and Functional Research of the Rare Allelic Variation of Caffeine Synthase Gene (TCS1g) in Tea Plants [J]. Scientia Agricultura Sinica, 2019, 52(10): 1772-1783.
[10] HAN YaFei, WANG XueDe, ZHENG YongZhan, MEI HongXian, WEI AnChi, LIU YanYang. Study on Changes of Sesame Protein Content and Its Components of Yuzhi 11 Sesame Seed During Growth Period [J]. Scientia Agricultura Sinica, 2018, 51(4): 652-661.
[11] FAN Xin,ZHAO LeiLin,ZHAI HongHong,WANG Yuan,MENG ZhiGang,LIANG ChengZhen,ZHANG Rui,GUO SanDui,SUN GuoQing. Functional Characterization of AtNEK6 Overexpression in Cotton Under Drought and Salt Stress [J]. Scientia Agricultura Sinica, 2018, 51(22): 4230-4240.
[12] ZHANG YuJuan, YOU Jun, LIU AiLi, LI DongHua, YU JingYin, WANG YanYan, ZHOU Rong, GONG HuiHui, ZHANG XiuRong. Screening Method for Salt Tolerance in Sesame (Sesamum indicum L.) and Identification of Candidate Salt-tolerant Genes [J]. Scientia Agricultura Sinica, 2018, 51(12): 2235-2247.
[13] LIU WenPing, Lü Wei, LI DongHua, REN GuoXiang, ZHANG YanXin, WEN Fei, HAN JunMei, ZHANG XiuRong. Drought Resistance of Sesame Germplasm Resources and Association Analysis at Adult Stage [J]. Scientia Agricultura Sinica, 2017, 50(4): 625-639.
[14] LIU YanYang, MEI HongXian, DU ZhenWei, WU Ke, ZHENG YongZhan, CUI XiangHua, ZHENG Lei. Construction of Core Collection of Sesame Based on Phenotype and Molecular Markers [J]. Scientia Agricultura Sinica, 2017, 50(13): 2433-2441.
[15] YANG MinMin, LIU HongYan, ZHOU Ting, QU HongHao, YANG YuanXiao, WEI Xin, ZUO Yang, ZHAO YingZhong. Production and Identification of F1 Interspecific Hybrid Between Sesamum indicum and Wild Relative S. Indicatum [J]. Scientia Agricultura Sinica, 2017, 50(10): 1763-1771.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!