Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (21): 4272-4284.doi: 10.3864/j.issn.0578-1752.2015.21.008

• PLANT PROTECTION • Previous Articles     Next Articles

Bioinformatics and Tissue-Specific Expression Analysis of Carboxylesterase Genes from Oxya chinensis

LIU Jiao1,2, ZHANG Jian-zhen1, LI Da-qi1, ZHANG Ting-ting1, MA En-bo1, ZHANG Jian-qin3   

  1. 1Institute of Applied Biology, Shanxi University, Taiyuan 030006
    2College of Life Sciences, Shanxi University, Taiyuan 030006
    3Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006
  • Received:2015-05-28 Online:2015-11-01 Published:2015-11-01

Abstract: 【Objective】Oxya chinensis is an important agricultural pest. The objective of this study is to reveal the function of carboxylesterases (Ces) genes and select potential molecular target for pest management through conducting the bioinformatics and tissue-specific expression analysis of Ces genes from O. chinensis transcriptome. 【Method】 The cDNA sequences of Ces genes were searched using the keyword “carboxylesterase” against the O. chinensis transcriptome database. The Ces cDNA sequence assembling, the deduced amino acid sequence analysis and the open reading frame finding were performed by using bioinformatics methods. Phylogenetic tree of O. chinensis carboxylesterase with complete ORF was constructed using neighbor-joining method. The structure, calculated molecular mass, isoelectric points, signal peptide and potential N-glycosylation sites of O. chinensis Ces amino acid sequences were predicted using corresponding online softwares. Optimal reference genes in different tissues of 5th instar nymphs were screened and relative expressions in different tissues of 10 Ces genes were detected by reverse transcription- quantitative PCR (RT-qPCR).【Result】 A total of 180 putative Ces cDNA fragments were identified from O. chinensis transcriptome. Among them 28 full-length cDNAs containing complete ORFs were obtained. Phylogenetic tree of Ces protein sequences from O. chinensis and other insect species showed that 28 O. chinensis Ces protein sequences were distributed in four clades, including clade A with Orthopteran and part of Dipteran α-esterases (20 Ces protein sequences), clade D with integumental esterases (2), clade E with β-esterases (4), and clade F with nonlepidopteran JHEs (2). With the exception of three Ces proteins with alkaline isoelectric points (pI), all the remaining Ces proteins are acidic or slightly acidic with pI ranging from 4.38 to 6.84. All the Ces protein sequences have N-glycosylation site, N-terminal conserved cysteine residues, and oxyanion hole. Signal peptide prediction showed 19 of 28 have signal peptide. Twenty-one Ces protein sequences have conserved catalytic triad S-E-H, however, the remaining 7 Ces protein sequences showed different amino acid substitutions. GeNorm and Normfinder analysis showed that EF1α and RP49 were the optimal reference genes. RT-qPCR showed that 10 Ces genes were expressed in 7 different tissues, in which OcCesA1, OcCesA6, OcCesA12, OcCesA14, OcCesA18 and OcCesA19 mainly expressed in the midgut and gastric caecum; OcCesA6, OcCesA18, OcCesA19 still expressed in Malpighian tubules; OcCesA2 highly expressed in the hindgut. OcCesD1 had the highest expression in Malpighian tubules, followed by the fat body and integument. OcCesE1 had the highest expression in gastric caeca, OcCesF2 had the highest expression in midgut.【Conclusion】A total of 28 Ces cDNAs with complete ORFs were identified from the O. chinensis transcriptome database. These Ces cDNAs were clustered into four different clades in the phylogenetic analysis. Significant expansions of the Ces genes were found in clade A and highly expressed in detoxification, excretory organs, such as midgut, gastric caeca and Malpighian tubules. These results contributed to the further functional analysis of O. chinensis Ces and biological control of O. chinensis based on Ces gene molecular target.

Key words: Oxya chinensis, transcriptome, carboxylesterase gene, bioinformatics, tissue-specific expression

[1]    Oakeshott J G, Claudianos C, Russell R J, Robin G C. Carboxyl/ holinesterases: a case study of evolution of successful multigene family. Bioessays, 1999, 21(12): 1031-1042.
[2]    Adams M D, Celniker S E, Holt R A. The genome sequence of Drosophila melanogaster. Science, 2000, 287(5461): 2185-2195.
[3]    Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova M V, Unger M F, Collins F H, Feyereisen R. Evolution of supergene families associated with insecticide resistance. Science, 2002, 298(5591): 179-181.
[4]    Strode C, Wondji C S, David J P, Hawkes N J, Lumjuan N, Nelson D R, Drane D R, Karunaratne S, Hemingway J, Black IV W C, Ranson H. Genomicanalysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochemistry and Molecular Biology, 2008, 38(1): 113-123.
[5]    Yan L Z, Yang P C, Jiang F, Cui N, Ma E B, Qiao C, Cui F. Transcriptomic and phylogenetic analysis of Culex pipiens quinquefasciatus for three detoxification gene families. BMC Genomics, 2012, 13(1): 609.
[6]    Claudianos C, Ranson H, Johnson R M, Biswas S, Schuler M A, Berenbaum M R, Feyereisen R, Oakeshott J G. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology, 2006, 15(5): 615-636.
[7]    Oakeshott J G, Johnson R M, Berenbaum M R, Ranson H, Cristino A S, Claudianos C. Metabolic enzymes associated with xenobiotic and chemosensory responses in Nasonia vitripennis. Insect Molecular Biology, 2010, 19(Suppl.1): 147-163.
[8]    Karatolos N, Pauchet Y, Wilkinson P, Chauhan R, Denholm I, Gorman K, Nelson D R, Bass C, Williamson M S. Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes. BMC Genomics, 2011, 12(1): 56.
[9]    Tsubota T, Shiotsuki T. Genomic analysis of carboxyl/cholinesterase genes in the silkworm Bombyx mori. BMC Genomics, 2010, 11(1): 377.
[10]   Yu Q Y, Lu C, Li W L, Xiang Z H, Zhang Z. Annotation and expression of carboxylesterases in the silkworm, Bombyx mori. BMC Genomics, 2009, 10(1): 553.
[11]   Zhang J Q, Li D Q, Ge P T, Yang M L, Guo Y P, Zhu K Y, Ma E B, Zhang J Z. RNA interference revealed the roles of two carboxylesterase genes in insecticide detoxification in Locusta migratoria. Chemosphere, 2013, 93(6): 1207-1215.
[12]   Cui F, Qu H, Cong J, Liu X L, Qiao C L. Do mosquitoes acquire organophosphate resistance by functional changes in carboxylesterases. The Journal of the Federation of American Societies for Experimental Biology, 2007, 21(13): 3584-3591.
[13]   Kamita S G, Hammock B D. Juvenile hormone esterase: biochemistry and structure. Journal of Pesticide Science, 2010, 35(3): 265-274.
[14]   Vogt R G, Riddiford L M, Prestwich G D. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82(24): 8827-8831.
[15]   董钧锋, 张继红, 王琛柱. 植物次生物质对烟青虫和棉铃虫食物利用及中肠解毒酶活性的影响. 昆虫学报, 2002, 45(3): 296-300.
Dong J F, Zhang J H, Wang C Z. Effects of plant allelochemicals on nutritional utilization and detoxication enzyme activities in two Helicoverpa species. Acta Entomologica Sinica, 2002, 45(3): 296-300. (in Chinese)
[16]   Zhang J Q, Li D Q, Ge P T, Guo Y P, Zhu K Y, Ma E B, Zhang J Z. Molecular and functional characterization of cDNAs putatively encoding carboxylesterases from the migratory locust, Locusta migratoria. PLOS ONE, 2014, 9(4): e94809.
[17]   Mackert A, Nascimento A M, Bitondi M M G, Hartfelder K, Simoes Z L P. Identification of a juvenile hormone esterase-like gene in the honey bee, Apis mellifera L.-expression analysis and functional assays. Comparative Biochemistry and Physiology, 2008, 150(1): 33-44.
[18]   Enayati A A, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Molecular Biology, 2005, 14(1): 3-8.
[19]   Dow J A T. Insights into the Malpighian tubule from functional genomics. Journal of Experimental Biology, 2009, 212(3): 435-445.
[20]   Zhang J Q, Ge P T, Li D Q, Guo Y P, Zhu K Y, Ma E B, Zhang J Z. Two homologous carboxylesterase genes from Locusta migratoria with different tissue expression patterns and roles in insecticide detoxification. Journal of Insect Physiology, 2015, 77: 1-8.
[21]   Field L M, Devonshire A L. Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochemical Journal, 1998, 330: 169-173.
[22]   Richmond R C, Nielsen K M, Brady J P, Snella E M. Physiology, biochemistry and molecular biology of the Est-6 locus in Drosophila melanogaster//Ecological and Evolutionary Genetics of Drosophila. Plenum Press, 1990: 273-292.
[23]   Ishida Y, Leal W S. Rapid inactivation of a moth pheromone.Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(39): 14075-14079.
[24]   Riddiford L M, Hiruma K, Zhou X, Nelson C A. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2003, 33(12): 1327-1338.
[25]   张建琴, 葛娉婷, 李大琪, 王燕, 张建珍, 马恩波. 飞蝗羧酸酯酶基因LmCesF1的时空表达及与杀虫剂耐受性的关系. 中国农业科学, 2014, 47(8): 1522-1530.
Zhang J Q, Ge P T, Li D Q, Wang Y, Zhang J Z, Ma E B. Spatio-temporal expression and insecticide tolerance analysis of carboxylesterase gene LmCesF1 from Locusta migratoria. Scientia Agricultura Sinica, 2014, 47(8): 1522-1530. (in Chinese)
[26]   Vogt R G, Riddiford L M. Pheromone binding and inactivation by moth antennae. Nature, 1981, 293: 161-163.
[27]   Ishida Y, Leal W S. Cloning of putative odorant-degrading enzyme and integumental esterase cDNAs from the wild silkmoth, Antheraea polyphemus. Insect Biochemistry and Molecular Biology, 2002, 32(12): 1775-1780.
[1] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[2] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[3] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[4] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[5] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[6] CHEN FengQiong, CHEN QiuSen, LIN JiaXin, WANG YaTing, LIU HanLin, LIANG BingRuoShi, DENG YiRu, REN ChunYuan, ZHANG YuXian, YANG FengJun, YU GaoBo, WEI JinPeng, WANG MengXue. Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress [J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3821.
[7] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[8] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[9] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[10] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[11] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[12] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[13] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[14] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[15] LIN Bing,CHEN YiQuan,ZHONG HuaiQin,YE XiuXian,FAN RongHui. Analysis of Key Genes About Flower Color Variation in Iris hollandica [J]. Scientia Agricultura Sinica, 2021, 54(12): 2644-2652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!