Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (11): 2353-2362.doi: 10.3864/j.issn.0578-1752.2013.11.020

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Identification of Silkworm Pupa-Specific Gene BmCP283 and Its Promoter

 CHENG  Dao-Jun, TANG  Lin, MENG  Meng, KANG  Li-Xia, WANG  Yong-Hu, PENG  Jian, MA  San-Yuan, XIA  Qing-You   

  1. State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715
  • Received:2012-11-19 Online:2013-06-01 Published:2012-12-31

Abstract: 【Objective】The objective of this study is to identify genes that are specifically expressed during silkworm pupa-adult transition, clone their promoters and provide supports for controlling artificially pupa-adult transition and develope pupal bioreactor in silkworm (Bombyx mori).【Method】Silkworm pupa-specific genes were identified through analysis of microarray data for gene expression during silkworm metamorphosis and confirmed by RT-PCR experiments. The promoters of silkworm pupa-specific genes were cloned by PCR experiments and their driving activities and pupa-specificity were detected by transgenic technology.【Result】Cuticular protein gene BmCP283 was found to be specifically expressed at pupal stage in silkworm and was regarded as a pupa-specific gene. The potential promoter with a length of 2 004 bp on the upstream of the translational initial site of BmCP283 was cloned. Transgenic experiments confirmed that the promoter of BmCP283 could drive the red fluorescent gene dsRed to be specifically expressed at late pupal stages, which was similar to the expression profile of endogenous BmCP283. 【Conclusion】Both the expression pattern of BmCP283 and the activities of its promoter is pupa-specific in silkworm.

Key words: silkworm , pupa , promoter , specific , transgenic

[1]Takeda M, Mita K, Quan G X, Shimada T, Okano K, Kanke E, Kawasaki H. Mass isolation of cuticle protein cDNAs from wing discs of Bombyx mori and their characterizations. Insect Biochemical and Molecular Biology, 2001, 31(10): 1019-1028.

[2]Sun G C, Hirose S, Ueda H. Intermittent expression of BmFTZ-F1, a member of the nuclear hormone receptor superfamily during development of the silkworm Bombyx mori. Developmental Biology, 1994,162(2): 426-437.

[3]Deng H M, Zheng S C, Yang X H, Liu L, Feng Q L. Transcription factors BmPOUM2 and BmβFTZ-F1 are involved in regulation of the expression of the wing cuticle protein gene BmWCP4 in the silkworm, Bombyx mori. Insect Molecular Biology, 2011, 20(1): 45-60.

[4]Deng H M, Zhang J L, Li Y, Zheng S, Liu L, Huang L H, Xu W H, Palli S R, Feng Q L. Homeodomain POU and Abd-A proteins regulate the transcription of pupal genes during metamorphosis of the silkworm, Bombyx mori. Proceedings of Natural Academic Sciences of the United States of America, 2012, 109(31): 12598-12603.

[5]Xia Q Y, Cheng D J, Duan J, Wang G H, Cheng T C, Zha X F, Liu C, Zhao P, Dai F Y, Zhang Z, He N J, Zhang L, Xiang Z H. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biology, 2007, 8(8): R162.

[6]陆改, 程廷才, 蒋亮, 金盛凯, 林平, 胡翠美, 夏庆友. 家蚕中肠特异启动子BmAPN的克隆及活性分析. 中国农业科学, 2012, 45(20): 4279-4287.

Lu G, Cheng T C, Jiang L, Jin S K, Lin P, Hu C M, Xia Q Y. Cloning and activity analysis of a midgut-specific BmAPN promoter in silkworm (Bombyx mori). Scientia Agricultura Sinica, 2012, 45(20): 4279-4287. (in Chinese)

[7]Wang H B, Nita M, Iwanaga M, Kawasaki H. βFTZ-F1 and Broad-Complex positively regulate the transcription of the wing cuticle protein gene, BMWCP5, in wing discs of Bombyx mori. Insect Biochemical and Molecular Biology, 2009, 39(9): 624-633.

[8]Liang J B, Zhang L, Xiang Z H, He N J. Expression profile of cuticular genes of silkworm, Bombyx mori. BMC Genomics, 2010, 11: 173.

[9]Charles J P. The regulation of expression of insect cuticle protein genes. Insect Biochemical and Molecular Biology, 2010, 40(3): 205-213.

[10]King-Jones K, Thummel C S. Nuclear receptors-a perspective from Drosophila. Natural Review of Genetics, 2005, 6(4): 311-323.

[11]Cheng D J, Xia Q Y, Duan J, Wei L, Huang C, Li Z Q, Wang G H, Xiang Z H. Nuclear receptors in Bombyx mori: insights into genomic structure and developmental expression. Insect Biochemical and Molecular Biology, 2008, 38(12): 1130-1137.

[12]Nishita Y, Takiya S. Structure and expression of the gene encoding a broad-complex homolog in the silkworm, Bombyx mori. Gene, 2004, 339: 161-172.

[13]Reza A M, Kanamori Y, Shinoda T, Shimura S, Mita K, Nakahara Y, Kiuchi M, Kamimura M. Hormonal control of a metamorphosis- specific transcriptional factor Broad-Complex in silkworm. Compative Biochemical Physiology B: Biochemical and Molecular Biology, 2004, 139(4): 753-761.

[14]Emery I F, Bedian V, Guild G M. Differential expression of Broad-Complex transcription factors may forecast tissue-specific developmental fates during Drosophila metamorphosis. Development, 1994, 120(11): 3275-3287.

[15]Togawa T, Augustine Dunn W, Emmons A C, Willis J H. CPF and CPFL, two related gene families encoding cuticular proteins of Anopheles gambiae and other insects. Insect Biochemical and Molecular Biology, 2007, 37(7): 675-688.

[16]Rebers J E, Willis J H. A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochemical and Molecular Biology, 2001, 31(11): 1083-1093.

[17]Andersen S O, Rafn K, Roepstorff P. Sequence studies of proteins from larval and pupal cuticle of the yellow meal worm, Tenebrio molitor. Insect Biochemical and Molecular Biology, 1997, 27(2): 121-131.

[18]Mugat B, Brodu V, Kejzlarova-Lepesant J, Antoniewski C, Bayer C  A, Fristrom J W, Lepesant J A. Dynamic expression of broad-complex isoforms mediates temporal control of an ecdysteroid target gene at the onset of Drosophila metamorphosis. Developmental Biology, 2000, 227(1): 104-117.

[19]Konopova B, Jindra M. Broad-Complex acts downstream of Met in juvenile hormone signaling to coordinate primitive holometabolan metamorphosis. Development, 2008, 135(3): 559-568.

[20]Zhong Y S, Mita K, Shimada T, Kawasaki H. Glycine-rich protein genes, which encode a major component of the cuticle, have different developmental profiles from other cuticle protein genes in Bombyx mori. Insect Biochemical and Molecular Biology, 2006, 36(2): 99-110.

[21]Bayer C A, Holley B, Fristrom J W. A switch in broad-complex zinc-finger isoform expression is regulated posttranscriptionally during the metamorphosis of Drosophila imaginal discs. Developmental Biology, 1996, 177(1): 1-14.

[22]Wang H B, Iwanaga M, Kawasaki H. Activation of BMWCP10 promoter and regulation by BR-C Z2 in wing disc of Bombyx mori. Insect Biochemical and Molecular Biology, 2009, 39(9): 615-623.

[23]Nita M, Wang H B, Zhong Y S, Mita K, Iwanaga M, Kawasaki H. Analysis of ecdysone-pulse responsive region of BMWCP2 in wing disc of Bombyx mori. Compative Biochemical Physiology B: Biochemical and Molecular Biology, 2009, 153(1): 101-108.

[24]Fischer J A, Giniger E, Maniatis T, Ptashne M. GAL4 activates transcription in Drosophila. Nature, 1988, 332(6167): 853-856.

[25]Ma L, Xu H F, Zhu J Q, Ma S Y, Liu Y, Jiang R J, Xia Q Y, Li S. Ras1(CA) overexpression in the posterior silk gland improves silk yield. Cell Research, 2011, 21(6): 934-943.
[1] LI XuFei,YANG ShengDi,LI SongQi,LIU HaiNan,PEI MaoSong,WEI TongLu,GUO DaLong,YU YiHe. Analysis of VlCKX4 Expression Characteristics and Prediction of Transcriptional Regulation in Grape [J]. Scientia Agricultura Sinica, 2023, 56(1): 144-155.
[2] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[3] JU Ming, MIAO HongMei, HUANG YingYing, MA Qin, WANG HuiLi, WANG CuiYing, DUAN YingHui, HAN XiuHua, ZHANG HaiYang. Analysis of Cross Compatibility Variation Among Diverse Sesamum Species and Biological Characteristics of the Interspecific Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(20): 3897-3909.
[4] CUI JiangKuan,REN HaoHao,CAO MengYuan,CHEN KunYuan,ZHOU Bo,JIANG ShiJun,TANG JiHua. SCAR-PCR Rapid Molecular Detection Technology of Heterodera zeae [J]. Scientia Agricultura Sinica, 2022, 55(17): 3334-3342.
[5] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[6] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[7] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[8] HE KeWei,CHEN JiaFa,ZHOU ZiJian,WU JianYu. Fusarium verticillioides Resistant Maize Inbred Line Development Using Host-Induced Gene Silencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(9): 1835-1845.
[9] AiHua WANG,HongYe MA,RongFei LI,ShiPin YANG,Rong QIAO,PeiLin ZHONG. Metabolic Analysis of Aroma Components in Two Interspecific Hybrids from the Cross of F.ananassa Duch. and Fragaria nilgerrensis Schlecht. [J]. Scientia Agricultura Sinica, 2021, 54(5): 1043-1054.
[10] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[11] ZHANG MengDi,YAN JunJie,GAO YuLin. The Adaptive Analysis of Phthorimaea operculella to Different Potato Tuber Varieties [J]. Scientia Agricultura Sinica, 2021, 54(3): 536-546.
[12] XIAO Fang,LI Jun,WANG HaoQian,ZHAI ShanShan,CHEN ZiYan,GAO HongFei,LI YunJing,WU Gang,ZHANG XiuJie,WU YuHua. Establishment and Application of A Duplex ddPCR Method to Quantify the NK603/zSSIIb Copy Number Ratio in Transgenic Maize NK603 [J]. Scientia Agricultura Sinica, 2021, 54(22): 4728-4739.
[13] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
[14] SONG ShaoZheng,YU KangYing,ZHANG Ting,LU Rui,PAN ShengQiang,CHENG Yong,ZHOU MingMing. Preparation and Expression of rhPA/GH Double Transgenic Rabbits [J]. Scientia Agricultura Sinica, 2021, 54(2): 412-421.
[15] DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!