Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (9): 1808-1817.doi: 10.3864/j.issn.0578-1752.2013.09.008

• PLANT PROTECTION • Previous Articles     Next Articles

Molecular Cloning, Sequence Analysis and Expression Pattern Detection of α-Tubulin Gene from Helicoverpa armigera (Hübner)

 YAN  Shuo, ZHU  Jia-Lin, ZHU  Wei-Long, PAN  Li-Long, ZHANG  Qing-Wen, LIU  Xiao-Xia   

  1. Department of Entomology, College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193
  • Received:2013-01-04 Online:2013-05-01 Published:2013-02-17

Abstract: 【Objective】The objective of this study is to clone and analyze a novel cDNA, named as HeTubA, encoding the α-tubulin from Helicoverpa armigera (Hübner), and detect the relative expression levels of HeTubA and HeTubB by real time PCR (QRT-PCR). 【Method】The total RNA was extracted from H. armigera 3rd instar larvae, and α-tubulin gene was cloned by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The relative expression levels of HeTubA and HeTubB were detected in different adult organs and developmental stages by QRT-PCR.【Result】Sequencing and structural analysis showed that the ORF of HeTubA was 1 353 bp in size, encoding 450 amino acid residues (GenBank accession number JQ069957). HeTubA contained conserved residues of α-tubulin. The homologue analysis revealed that HeTubA shared high identity with Xestia c-nigrum, Papilio xuthus and Bombyx mori α-tubulin, which indicated that insect α-tubulin was conserved in evolutional process. QRT-PCR revealed that HeTubA and HeTubB mRNA expression was neither adult organ-specific nor developmental-stage-specific. Relative expression levels of HeTubA and HeTubB were the highest in compound eye, the lowest in abdomen. Expression of HeTubA peaked at last larval instar and pupal development, whereas that of HeTubB peaked at last larval instar and adult development.【Conclusion】HeTubA was cloned and mRNA expression levels of HeTubA and HeTubB were detected. 3D structural of HeTubA was constructed. The study is helpful for further researches on the function of HeTubA and HeTubB and development of a new-type pesticide.

Key words: Helicoverpa armigera , α-tubulin , β-tubulin , gene cloning , gene expression , 3D structure

[1]张青文. 有害生物综合治理学. 北京: 中国农业大学出版社, 2007.

Zhang Q W. Integrated Pest Management. Beijing: China Agricultural University Press, 2007. (in Chinese)

[2]Tabashnik B E, Carrière Y, Dennehy T J, Morin S, Sisterson M S, Roush R T, Shelton A M, Zhao J Z. Insect resistance to transgenic Bt crops: lessons from the laboratory and field. Journal of Economic Entomology, 2003, 96(4): 1031-1038.

[3]陈海燕, 杨亦桦, 武淑文, 杨亚军, 吴益东. 棉铃虫田间种群Bt毒素Cry1Ac抗性基因频率的估算. 昆虫学报, 2007, 50(1): 25-30.

Chen H Y, Yang Y H, Wu S W, Yang Y J, Wu Y D. Estimated frequency of resistance alleles to Bt toxin Cry1Ac in the field populations of Helicoverpa armigera (Hübner) from Northern China. Acta Entomologica Sinica, 2007, 50(1): 25-30. (in Chinese)

[4]张朝贤, 倪汉文, 魏守辉, 黄红娟, 刘延, 崔海兰, 隋标峰, 张猛, 郭峰. 杂草抗药性研究进展. 中国农业科学, 2009, 42(4): 1274-1289.

Zhang C X, Ni H W, Wei S H, Huang H J, Liu Y, Cui H L, Sui B F, Zhang M, Guo F. Current advances in research on herbicide resistance. Scientia Agricultura Sinica, 2009, 42(4): 1274-1289. (in Chinese)

[5]李红霞, 周明国. 用等位基因特异性寡核苷酸 (ASO)-PCR快速检测抗多菌灵的油菜菌核病菌. 中国农业科学, 2004, 37(9): 1396-1399.

Li H X, Zhou M G. Rapid indentification of carbendazim resistant strains of Sclerotinia sclerotiorum using allele-specific oligonucleotide (ASO)-PCR. Scientia Agricultura Sinica, 2004, 37(9): 1396-1399. (in Chinese)

[6]李庆章, 郝艳红, 高学军, 刘永杰, 高文学, 赵冰. 苯并咪唑氨基甲酸酯类药物抗猪囊尾蚴的作用靶点. 中国农业科学, 2007, 40(5): 1024-1032.

Li Q Z, Hao Y H, Gao X J, Liu Y J, Gao W X, Zhao B. The target of benzimidazole carbamate against Cysticerci cellulosae. Scientia Agricultura Sinica, 2007, 40(5): 1024-1032. (in Chinese)

[7]Lee M H, Pan S M, Ng T W, Chen P S, Wang L Y, Chung K R. Mutations of β-tubulin codon 198 or 200 indicate thiabendazole resistance among isolates of Penicillium digitatum collected from citrus in Taiwan. International Journal of Food Microbiology, 2011, 150(2/3): 157-163.

[8]Cheung C H A, Wu S Y, Lee T R, Chang C Y, Wu J S, Hsieh H P, Chang J Y. Cancer cells acquire mitotic drug resistance properties through beta Ⅰ-tubulin mutation and alterations in the expression of beta-tubulin isotypes. PLoS One, 2010, 5(9): e12564.

[9]Yamamoto E, Zeng L, Baird W V. α-tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica. The Plant Cell, 1998, 10(2): 297-308.

[10]Manfredi J J, Horwitz S B. Taxol: an antimitotic agent with a new mechanism of action. Pharmacology and Therapeutics, 1984, 25(1): 83-125.

[11]Dutcher S K. Long-lost relatives reappear: identification of new members of the tubulin superfamily. Current Opinion in Microbiology, 2003, 6(6): 634-640.

[12]Dutcher S K. The tubulin fraternity: alpha to eta. Current Opinion in Cell Biology, 2001, 13(1): 49-54.

[13]樊东, 秦松柏, 朴冬花, 许艳丽. 二化螟β1微管蛋白基因cDNA序列的克隆与序列分析. 生物技术通报, 2008(4): 130-135.

Fan D, Qin S B, Piao D H, Xu Y L. Cloning and sequence analysis of β1 tubulin cDNA from rice stem borer, Chilo suppressalis (Walker). Biotechnology Bulletin, 2008(4): 130-135. (in Chinese)

[14]樊东, 秦松柏, 朴冬花, 许艳丽. 三种鳞翅目夜蛾科昆虫α-微管蛋白基因的克隆与mRNA表达水平. 昆虫知识, 2008, 45(4): 542-548.

Fan D, Qin S B, Piao D H, Xu Y L. Cloning and mRNA expression levels of α-tubulin cDNAs from three noctuid spelies. Chinese Bulletin of Entomology, 2008, 45(4): 542-548. (in Chinese)

[15]闫硕, 张璟, 张青文, 王琼, 熊晓菲, 刘小侠. 小地老虎β-微管蛋白基因cDNA序列的克隆、序列分析和表达检测. 昆虫学报, 2011, 54(10): 1181-1188.

Yan S, Zhang J, Zhang Q W, Wang Q, Xiong X F, Liu X X. Molecular cloning, sequence analysis and expression detection of β-tubulin gene in Agrotis ypsilon (Rottemberg) (Lepidoptera: Noctuidae). Acta Entomology Sinica, 2011, 54(10): 1181-1188. (in Chinese)

[16]闫硕, 刘小侠, 韩娜娜, 倪慧, 孙洁茹, 张青文. 棉铃虫β-微管蛋白基因cDNA序列的克隆与序列分析. 应用昆虫学报, 2012, 49(1): 130-137.

Yan S, Liu X X, Han N N, Ni H, Sun J R, Zhang Q W. Molecular cloning and sequence analysis of β-tubulin in Helicoverpa armigera. Chinese Journal of Applied Entomology, 2012, 49(1): 130-137. (in Chinese)

[17]Rybczynski R, Gilbert L I. Cloning of a β1 tubulin cDNA from an insect endocrine gland: developmental and hormone-induced changes in mRNA expression. Molecular and Cell Endocrinology, 1998, 141(1): 141-151.

[18]Wen J G, Yan J, Xu J, Shen D L. Cloning and characterization of a β3 tubulin cDNA from the small brown planthopper, Laodelphax striatellus. Biochemical Genetics, 2005, 43(1/2): 59-64.

[19]Bialojan S, Falkenburg D, Renkawitz-Pohl R. Characterization and developmental expression of β tubulin genes in Drosophila melanogaster. The European Molecular Biology Organization Journal, 1984, 3(11): 2543-2548.

[20]Rudolph J E, Kimble M, Hoyle H D, Subler M A, Raff E C. Three Drosophila beta-tubulin sequences: a developmentally regulated isoform (β3), the testis-specific isoform (β2), and an assembly-defective mutation of the testis-specific isoform (B2t8) reveal both an ancient divergence in metazoan isotypes and structural constraints for beta-tubulin function. Molecular and Cell Biology, 1987, 7(6): 2231-2242.

[21]Quan G X, Kanke E, Kawasaki H. Isolation and particular expression of a new β-tubulin gene in wing discs during metamorphosis of Bombyx mori. Journal of Sericultural Science of Japan, 1998, 67(1): 43-50.

[22]Kawasaki H, Sugaya K, Quan G X, Nohata J, Mita K. Analysis of α- and β-tubulin genes of Bombyx mori using an EST database. Insect Biochemistry and Molecular Biology, 2003, 33(1): 131-137.

[23]Mita K, Nenoi M, Morimyo M, Tsuji H, Ichimura S, Sawai M, Hamana K. Expression of the Bombyx mori β-tubulin-encoding gene in the testis. Gene, 1995, 162(2): 329-330.

[24]Hachouf-Gherras S, Besson M T, Bosquet G. Identification and developmental expression of a Bombyx mori α-tubulin gene. Gene, 1998, 208(1): 89-94.

[25]Riparbelli M G, Callaini G. Drosophila parthenogenesis: a tool to decipher centrosomal vs acentrosomal spindle assembly pathway. Experimental Cell Research, 2008, 314(7): 1617-1625.

[26]Riparbelli M G, Giordano R, Callaini G. Centrosome inheritance in the parthenogenetic egg of the collembolan Folsomia candida. Cell Tissue Research, 2006, 326(3): 861-872.

[27]Riparbelli M G, Tagu D, Bonhomme J, Callaini G. Aster self-organization at meiosis: a conserved mechanism in insect parthenogenesis? Developmental Biology, 2005, 278(1): 220-230.

[28]Yang P, Zhou W W, Zhang Q, Cheng J A, Zhu Z R, Way M. Differential gene expression profiling in the developed ovaries between the parthenogenetic and bisexual female rice water weevils, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae). Chinese Science Bulletin, 2009, 54(20): 3822-3829.

[29]Rybczynski R, Gilbert L I. Prothoracicotropic hormone elicits a rapid, developmentally specific synthesis of β tubulin in an insect endocrine gland. Developmental Biology, 1995, 169(1): 15-28.

[30]Wu K J, Gong P Y. A new and practical arti?cial diet for the cotton bollworm. Entomologia Sinica, 1997, 4(3): 277-282.

[31]Combet C, Blanchet C, Geourjon C, Deléage G. NPS@: network protein sequence analysis. Trends in Biochemical Sciences, 2000, 25(3): 147-150.

[32]Hofmann K, Stoffel W. TMBASE-a database of membrane spanning protein segments. Biology Chemical Hoppe-Seyler, 1993, 374: 166.

[33]Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22(2): 195-201.

[34]Guex N, Peitsch M C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis, 1997, 18(15): 2714-2723.

[35]Schwede T, Kopp J, Guex N, Peitsch M C. Swiss-model: an automated protein homology-modeling server. Nucleic Acids Research, 2003, 31(13): 3381-3385.

[36]Yen T J, Machlin P S, Cleveland D W. Autoregulated instability of β-tubulin mRNAs by recognition of the nascent amino terminus of β-tubulin. Nature, 1988, 334(6183): 580-585.

[37]Menéndez M, Rivas G, Díaz F, Andreu J M. Control of the structure stability of the tubulin dimer by one high affinity bound magnesium ion at nucleotide N-site. The Journal of Biological Chemistry, 1998, 273(1): 167-176.

[38]Libusová L, Dráber P. Multiple tubulin forms in ciliated protozoan Tetrahymena and Paramecium species. Protoplasma, 2006, 227(2/4): 65-76.

[39]Song L, Liu X X, Zhang Y A, Zhang Q W, Zhao Z W. The cloning and expression of α-tubulin in Monochamus alternatus. Insect Molecular Biology, 2008, 17(5): 495-504.
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[4] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[5] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[6] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[7] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[8] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[9] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[10] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[11] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[12] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[13] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[14] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[15] ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!