Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (7): 1448-1462.doi: 10.3864/j.issn.0578-1752.2013.07.016

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Proteome Comparison of Honeybee (Apis mellifera ligustica) Worker Venom Between Collected from Venom Glands and Electrical Stimulated

 LI  Rong-Li, ZHANG  Lan, HAN  Bin, FANG  Yu, FENG  Mao, ZHOU  Tian-E, LI  Jian-Ke   

  1. Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093
  • Received:2012-09-28 Online:2013-04-01 Published:2012-11-19

Abstract: 【Objective】The objective of this study is to investigate bee venom composition and difference by comparison of bee venom collected from venom glands and electrical stimulated of Italian bees (Apis mellifera ligustica), and to provide a theoretical basis for pharmaceutical application.【Method】The proteome between bee venom collected directly from the venom glands and artificially electrical stimulation were compared using gel-based (one-dimensional gel electrophoresis, 1-DE, two-dimensional gel electrophoresis, 2-DE) and gel-free proteomics approaches, mass spectrometry, and bioinformatics.【Result】In the gland venom, 19, 11 and 14 proteins were identified by 1-DE, 2-DE and shotgun analysis, respectively, which correspond to 30 nonredundant proteins. They were mainly classified as bee venom toxins (50%), antioxidant systems, protein folding and molecular transporters (50%). In construct, in electrical stimulated venom, 12, 3 and 7 proteins were identified, respectively, by 1-DE, 2-DE and shotgun analysis. They were classified into 14 nonredundant proteins, which the major components were venom toxins (93%). Notably, phospholipase A2-like protein was identified for the first time in two forms of bee venom and peptidyl-prolyl cis-trans isomerase was identified only in the gland venom for the first time. The abundance of apamin preproprotein and secapin in the gland venom were significantly higher than those in the electrical stimulated venom. However, phospholipase A-2, venom dipeptidyl peptidase IV precursor, venom allergen acid phosphatase and mast cell degranulating peptide had higher abundance in the electrical stimulated venom than those in the gland venom.【Conclusion】 The venom collected from venom glands contains more protein species, but the abundance of the toxin proteins in electrical stimulated venom are no less than the venom collected from the glands. As the pharmacological components are mainly contained in the toxin proteins, the electrical stimulated venom is a convenient and effective way for utilization. The identified new proteins significantly extend the knowledge of bee venom composition. The result may provide a theoretical and practical basis for future rational use of the honeybee venom.

Key words: Apis mellifera ligustica , bee venom directly collected from venom glands , bee venom collected from electrical stimulated , proteome , gel-electrophoresis , gel-free

[1]Gauldie J, Hanson J M, Rumjanek F D, Shipolini R A, Vernon C A. The peptide components of bee venom. European Journal of Biochemistry, 1976, 61(2): 369-376.

[2]Ratcliffe N A, Mello C B, Garcia E S, Butt T M, Azambuja P. Insect natural products and processes: New treatments for human disease. Insect Biochemistry and Molecular Biology, 2011, 41(5): 747-769.

[3]Kokot Z J, Matysiak J. Simultaneous determination of major constituents of honeybee venom by LC-DAD. Chromatographia, 2009, 69(11): 1-5.

[4]Son D J, Lee J W, Lee Y H, Song H S, Lee C K, Hong J T. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacology & Therapeutics, 2007, 115(2): 246-270.

[5]Bogdanov S. Bee venom: composition, health, medicine: A review. Bee Product Science, 2012.

[6]Hsiang H K, Elliott W B. Differences in honey bee (Apis mellifera) venom obtained by venom sac extraction and electrical milking. Toxicon, 1975, 13(2): 145-148.

[7]Peiren N, De Graaf D C, Vanrobaeys F, Danneels E L, Devreese B, Van Beeumen J, Jacobs F J. Proteomic analysis of the honey bee worker venom gland focusing on the mechanisms of protection against tissue damage. Toxicon, 2008, 52(1): 72-83.

[8]Matysiak J, Schmelzer C E H, Neubert R H H, Kokot Z J. Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54(2): 273-278.

[9]De Abreu R M M, Silva de Moraes R L M, Camargo-Mathias M I. Biochemical and cytochemical studies of the enzymatic activity of the venom glands of workers of honey bee Apis mellifera L.(Hymenoptera, Apidae). Micron, 2010, 41(2): 172-175.

[10]张巧利. 中华蜜蜂 (Apis cerana) 毒腺 cDNA 文库构建和表达序列标签 (EST) 分析[D]. 泰安: 山东农业大学, 2006.

Zhang Q L. Construction of cDNA library from Apis cerana venom gland and analysis of Expressed Sequence Tag (EST) [D]. Taian: Shandong Agricultural University, 2006. (in Chinese)

[11]Russell P J, Hewish D, Carter T, Sterling-Levis K, Ow K, Hattarki M, Doughty L, Guthrie R, Shapira D, Molloy P L, Werkmeister J A, Kortt A A. Cytotoxic properties of immunoconjugates containing melittin-like peptide 101 against prostate cancer: in vitro and in vivo studies. Cancer Immunology, Immunotherapy, 2004, 53(5): 411-421.

[12]Putz T, Ramoner R, Gander H, Rahm A, Bartsch G, Thurnher M. Antitumor action and immune activation through cooperation of bee venom secretory phospholipase A2 and phosphatidylinositol-(3, 4)-bisphosphate. Cancer Immunology, Immunotherapy, 2006, 55(11): 1374-1383.

[13]Hoffman D R. Hymenoptera venom allergens. Clinical Reviews in Allergy and Immunology, 2006, 30(2): 109-128.

[14]Fennell J F, Shipman W H, Cole L J. Antibacterial action of a bee venom fraction (melittin) against a penicillin-resistant staphylococcus and other microorganisms. DTIC Document, 1967.

[15]Liu S, Yu M, He Y, Xiao L, Wang F, Song C, Sun S, Ling C, Xu Z. Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology, 2008, 47(6): 1964-1973.

[16]Vincent J P, Schweitz H, Lazdunski M. Structure-function relations and site of action of apamin, a neurotoxic polypeptide of bee venom with an action on the central nervous system. Biochemistry, 1975, 14(11): 2521-2525.

[17]浦升磊. 意大利蜜蜂蜂毒明肽相关基因 cDNA 克隆及表达研究[D]. 长春: 吉林大学, 2008.

Pu S L. Cloning and expression of a cDNA encoding apamin from the venom of Apis mellifera [D]. Changchun: Jilin University, 2008. (in Chinese)

[18]Buku A. Mast cell degranulating (MCD) peptide: a prototypic peptide in allergy and inflammation. Peptides, 1999, 20(3): 415-420.

[19]张素方, 施婉君, 张传溪, 程家安. 中华蜜蜂蜂毒镇静肽基因的cDNA克隆和表达. 中国生物化学与分子生物学报, 2003, 19(3): 343-348.

Zhang S F, Shi W J, Zhang C X, Cheng J A. Cloning and expression of a cDNA encoding secapin from the venom of Apis cerana cerana. Chinese Journal of Biochemistry and Molecular Biology, 2003, 19(3): 343-348. (in Chinese)

[20]Putz T, Ramoner R, Gander H, Rahm A, Bartsch G, Bernardo K, Ramsay S, Thurnher M. Bee venom secretory phospholipase A2 and phosphatidylinositol-homologues cooperatively disrupt membrane integrity, abrogate signal transduction and inhibit proliferation of renal cancer cells. Cancer Immunology, Immunotherapy, 2007, 56(5): 627-640.

[21]于琨瑛, 杨慧. 蜂毒变应原及蜂毒免疫治疗. 生命的化学, 2006, 26(4): 358-360.

Yu K Y, Yang H. Honeybee venom allergens and venom immune therapy. Chemistry of Life, 2006, 26(4): 358-360. (in Chinese)

[22]Blank S, Bantleon F I, McIntyre M, Ollert M, Spillner E. The major royal jelly proteins 8 and 9 (Api m 11) are glycosylated components of Apis mellifera venom with allergenic potential beyond carbohydrate based reactivity. Clinical & Experimental Allergy, 2012, 42(6): 976-985.

[23]余茂耘, 韦传宝. 蜂毒生物制品及其临床应用价值. 中国临床康复, 2004, 8(5): 944-945.

Yu M Y, Wei C B. Bee venom biological products and its clinical application value. Chinese Journal of Clinical Rehabilitation, 2004, 8(5): 944-945. (in Chinese)

[24]Mueller U, Reisman R, Wypych J, Elliott W, Steger R, Walsh S, Arbesman C. Comparison of vespid venoms collected by electrostimulation and by venom sac extraction. Journal of Allergy and Clinical immunology, 1981, 68(4): 254-261.

[25]Rybak-Chmielewska H, Szczêsna T. HPLC study of chemical composition of honeybee (Apis mellifera L.) venom. Journal of Apicultural Science, 2004, 48(2): 103-108.

[26]John H, Walden M, Schäfer S, Genz S, Forssmann W G. Analytical procedures for quantification of peptides in pharmaceutical research by liquid chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2004, 378(4): 883-897.

[27]李建科, 冯毛, 郑爱娟. 蜜蜂蛋白质组研究进展. 中国农业科学, 2011, 44(17): 3649-3657.

Li J K, Feng M, Zheng A J. Advanced research on honeybee proteome. Scientia Agricultura Sinica, 2011,44(17): 3649-3657. (in Chinese)

[28]Peiren N, Vanrobaeys F, de Graaf D C, Devreese B, Van Beeumen J, Jacobs F J. The protein composition of honeybee venom reconsidered by a proteomic approach. Biochimica et Biophysica Acta, 2005, 1752(1): 1-5.

[29]Han B, Li C, Zhang L, Fang Y, Feng M, Li J. Novel royal jelly proteins identified by gel-based and gel-free proteomics. Journal of Agricultural and Food Chemistry, 2011, 59: 10346-10355.

[30]Zhang L, Fang Y, Li R, Feng M, Han B, Zhou T, Li J. Towards posttranslational modification proteome of royal jelly. Journal of Proteomics, 2012, 75: 5327-5341.

[31]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1/2): 248-254.

[32]张兰, 李建科, 吴黎明. 王浆高产蜜蜂(Apis mellifera L.)卵期发育蛋白质组分析. 中国农业科学, 2007, 40(6): 1276-1287.

Zhang L, Li J K, Wu L M. Profile analysis of the proteome of the eggs of the higher royal jelly producing bees (Apis mellifera L.). Scientia Agricultura Sinica, 2007, 40(6): 1276-1287. (in Chinese)

[33]Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Molecular & Cellular Proteomics, 2005, 4(9): 1265-1272.

[34]Görg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics. Proteomics, 2004, 4(12): 3665-3685.

[35]Kozlov S A, Grishin E V. The universal algorithm of maturation for secretory and excretory protein precursors. Toxicon, 2007, 49(5): 721-726.

[36]De Graaf D C, Aerts M, Danneels E, Devreese B. Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. Journal of Proteomics, 2009, 72(2): 145-154.

[37]Kettner A, Hughes G J, Frutiger S, Astori M, Roggero M, Spertini F, Corradin G. Api m 6: a new bee venom allergen. Journal of Allergy and Clinical Immunology, 2001, 107(5): 914-920.

[38]Göthel S F, Marahiel M A. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cellular and Molecular Life Sciences, 1999, 55(3): 423-436.

[39]Kreil G, Haiml L, Suchanek G. Stepwise cleavage of the pro part of promelittin by dipeptidylpeptidase IV. European Journal of Biochemistry, 1980, 111(1): 49-58.

[40]Baek J H, Lee S H. Identification and characterization of venom proteins of two solitary wasps, Eumenes pomiformis and Orancistrocerus drewseni. Toxicon, 2010, 56(4): 554-562.

[41]Winningham K M, Fitch C D, Schmidt M, Hoffman D R. Hymenoptera venom protease allergens. Journal of Allergy and Clinical Immunology, 2004, 114(4): 928-933.

[42]Dos Santos L D, Santos K S, Pinto J R A, Dias N B, Souza B M, Dos Santos M F, Perales J, Domont G B, Castro F M, Kalil J E, Palam M S. Profiling the proteome of the venom from the social wasp Polybia paulista: a clue to understand the envenoming mechanism. Journal of Proteome Research, 2010, 9(8): 3867-3877.

[43]Choo Y M, Lee K S, Yoon H J, Kim B Y, Sohn M R, Roh J Y, Je Y H, Kim N J, Kim I, Woo S D, Sohn H D, Jin B R. Dual function of a bee venom serine protease: prophenoloxidase-activating factor in Arthropods and Fibrin (ogen) olytic enzyme in mammals. PloS One, 2010, 5(5): e10393.

[44]Krishnan A, Nair P N, Jones D. Isolation, cloning, and characterization of new chitinase stored in active form in chitin-lined venom reservoir. Journal of Biological Chemistry, 1994, 269(33): 20971-20976.

[45]Evans J D, Aronstein K, Chen Y P, Hetru C, Imler J L, Jiang H, Kanost M, Thompson G J, Zou Z, Hultmark D. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 2006, 15(5): 645-656.

[46]Kucharski R, Maleszka R. Arginine kinase is highly expressed in the compound eye of the honey-bee, Apis mellifera. Gene, 1998, 211(2): 343-349.

[47]Weinberg M. Applying Melittin's Structure to Inhibit the Proliferation of Tumor Cells. 2011.

[48]柳涛, 藤田亚美, 熊本荣一. 蜂毒及其组成成分的生理作用机制及进展-致痛或镇痛. 神经解剖学杂志, 2010, 25(6): 687-690.

Liu T, Tsugumi Fujita, Eiiehi Kumamoto. Progress in physiological actions of bee venom and it’s components-noeieeption or antinociception. Chinese Journal of Neuroanatomy, 2009, 25(6): 687-690. (in Chinese)

[49]Weers P M M, Ryan R O. Apolipophorin III: role model apolipoprotein. Insect Biochemistry and Molecular Biology, 2006, 36(4): 231-240.

[50]Forêt S, Maleszka R. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Research, 2006, 16(11): 1404-1413.

[51]Boch R. Identification of iso-amyl acetate as an active component in the sting pheromone of the honey bee. Nature, 1962, 195: 1018-1020.
[1] WANG RongHua,MENG LiFeng,FENG Mao,FANG Yu,WEI QiaoHong,MA BeiBei,ZHONG WeiLai,LI JianKe. Proteome Analysis of the Salivary Gland of Nurse Bee from High Royal Jelly Producing Bees and Italian Bees [J]. Scientia Agricultura Sinica, 2022, 55(13): 2667-2684.
[2] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
[3] HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124.
[4] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[5] GAO Yan,ZHU YaNan,LI QiuFang,SU SongKun,NIE HongYi. Transcriptomic Analysis of Genes Related to Nursing Behavior in the Brains of Apis mellifera ligustica [J]. Scientia Agricultura Sinica, 2020, 53(19): 4092-4102.
[6] GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204.
[7] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
[8] Yu DU,DingDing ZHOU,JieQi WAN,JiaXuan LU,XiaoXue FAN,YuanChan FAN,Heng CHEN,CuiLing XIONG,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Profiling and Regulation Network of Differentially Expressed Genes During the Development Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(1): 201-212.
[9] FU ZhongMin,CHEN HuaZhi,LIU SiYa,ZHU ZhiWei,FAN XiaoXue,FAN YuanChan,WAN JieQi,ZHANG Lu,XIONG CuiLing,XU GuoJun,CHEN DaFu,GUO Rui. Immune Responses of Apis mellifera ligustia to Nosema ceranae Stress [J]. Scientia Agricultura Sinica, 2019, 52(17): 3069-3082.
[10] YU Jing,ZHANG WeiXing,MA LanTing,XU BaoHua. Effect of Dietary α-Linolenic Acid Levels on Physiological Function of Apis mellifera ligustica Worker Bee Larvae [J]. Scientia Agricultura Sinica, 2019, 52(13): 2368-2378.
[11] GUO Rui,DU Yu,TONG XinYu,XIONG CuiLing,ZHENG YanZhen,XU GuoJun,WANG HaiPeng,GENG SiHai,ZHOU DingDing,GUO YiLong,WU SuZhen,CHEN DaFu. Differentially Expressed MicroRNAs and Their Regulation Networks in Apis mellifera ligustica Larval Gut During the Early Stage of Ascosphaera apis Infection [J]. Scientia Agricultura Sinica, 2019, 52(1): 166-180.
[12] GUO Rui,CHEN HuaZhi,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,DU Yu,WANG HaiPeng,GENG SiHai,ZHOU DingDing,LIU SiYa,CHEN DaFu. Analysis of Differentially Expressed Circular RNAs and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2018, 51(23): 4575-4590.
[13] Rui GUO,Yu DU,CuiLing XIONG,YanZhen ZHENG,ZhongMin FU,GuoJun XU,HaiPeng WANG,HuaZhi CHEN,SiHai GENG,DingDing ZHOU,CaiYun SHI,HongXia ZHAO,DaFu CHEN. Differentially Expressed MicroRNA and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Larval Gut [J]. Scientia Agricultura Sinica, 2018, 51(21): 4197-4209.
[14] Rui GUO, SiHai GENG, CuiLing XIONG, YanZhen ZHENG, ZhongMin FU, HaiPeng WANG, Yu DU, XinYu TONG, HongXia ZHAO, DaFu CHEN. Differential Expression Analysis of Long Non-Coding RNAs During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2018, 51(18): 3600-3613.
[15] LI Shuang, LI JianKe. Comparative Analysis of Phosphoproteome Between Mandibular Glands of High Royal Jelly Producing Bees and Italian Bees [J]. Scientia Agricultura Sinica, 2017, 50(23): 4656-4670.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!