Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (7): 1441-1447.doi: 10.3864/j.issn.0578-1752.2013.07.015

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

miR-133a Targets BIRC5 to Regulate Its Gene Expression in Chicken

 WANG  Xing-Guo, SHAO  Fang, GONG  Dao-Qing, LU  Xiang-Yun, GU  Zhi-Liang   

  1. 1.College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu;
    2.Department of Life Science and Technology, Changshu Institute of Technology, Changshu 215500, Jiangsu
  • Received:2012-10-08 Online:2013-04-01 Published:2013-01-18

Abstract: 【Objective】This study was conducted to investigate the expression pattern of miR-133a in various chicken tissues, and find whether baculoviral IAP repeat containing 5 (BIRC5) is the target gene of miR-133a.【Method】The bioinformatics methods were used to predict the target genes of miR-133a. Real-time PCR was used to detect the expression patterns of miR-133a of various tissues in chicken. Dual-luciferase reporter assays and site mutation assays were used to verify whether BIRC5 is a target gene of miR-133a. 【Result】Two hundred and eighty-seven genes of 11891 genes from 3′UTR database were predicted as target genes of miR-133a. The expression patterns of miR-133a in various chicken tissues showed that miR-133a was highly expressed in muscle especially in skeletal muscle. Reporter assays showed that BIRC5 was the target gene of miR-133a and the site mutation assays validated the target site of miR-133a in BIRC5. 【Conclusion】 miR-133a is a miRNA related with skeletal muscle development of chicken, and BIRC5 is a bona fide target gene in chicken.

Key words: chicken , skeletal muscle , miR-133a , BIRC5 gene

[1]Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.

[2]郑永霞, 焦炳华. miRNA的生物形成及调控基因表达机制. 生命的化学, 2010, 30(6): 821-826.

Zheng Y X, Jiao B H. Biogenesis of microRNA and mechanism of the regulation of gene expression. Chemistry of Life, 2010, 30(6): 821-826. (in Chinese)

[3]王星果, 郁建锋, 顾志良. microRNA在肌肉发育中的功能研究进展. 生命科学, 2010, 22(2): 133-138.

Wang X G, Yu J F, Gu Z L. Function of microRNA in muscle development. Chinese Bulletin of Life Sciences, 2010, 22(2): 133-138. (in Chinese)

[4]McCarthy J J, Esser K A. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. Journal of Applied Physiology, 2007, 102(1): 306-313.

[5]Chen J F, Mandel E M, Thomson J M, Wu Q, Callis T E, Hammond S  M, Conlon F L, Wang D Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 2006, 38(2): 228-233.

[6]Huang M B, Xu H, Xie S J, Zhou H, Qu L H. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS One, 2011, 6(12): e29173.

[7]Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang M L, Segnalini P, Gu Y, Dalton N D, Elia L, Latronico M V, Hoydal M, Autore C, Russo M A, Dorn G W, Ellingsen O, Ruiz-Lozano P, Peterson K L, Croce C M, Peschle C, Condorelli G. MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 2007, 13(5): 613-618.

[8]Belevych A E, Sansom S E, Terentyeva R, Ho H T, Nishijima Y, Martin M M, Jindal H K, Rochira J A, Kunitomo Y, Abdellatif M, Carnes C A, Elton T S, Gyorke S, Terentyev D. MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex. PLoS One, 2011, 6(12): e28324.

[9]Tao J, Wu D, Xu B, Qian W, Li P, Lu Q, Yin C, Zhang W. microRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncology Reports, 2012, 27(6): 1967-1975.

[10]项茹, 吴正升, 张晴, 徐晓春, 吴强. miR-133a在乳腺癌组织中的表达及其临床意义. 安徽医科大学学报, 2011, 46(2): 109-112.

Xiang R, Wu Z S, Zhang Q, Xu X C, Wu Q. Expression of miR-133a in breast carcinoma and its significance. Acta Universitatis Medicinalis Anhui, 2011, 46(2): 109-112. (in Chinese)

[11]谢海涛. miR-133a在结肠癌组织中的表达. 广东医学, 2012, 33(15): 2242-2243.

Xie H T. Expression of miR-133a in colon carcinoma. Guangdong Medical Journal, 2012, 33(15): 2242-2243. (in Chinese)

[12]Ambrosini G, Adida C, Altieri D C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Medicine, 1997, 3(8): 917-921.

[13]Dallaglio K, Marconi A, Pincelli C. Survivin: a dual player in healthy and diseased skin. The Journal of Investigative Dermatology, 2012, 132(1): 18-27.

[14]Li F, Ambrosini G, Chu E Y, Plescia J, Tognin S, Marchisio P C, Altieri D C. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 1998, 396(6711): 580-584.

[15]Li F, Ackermann E J, Bennett C F, Rothermel A L, Plescia J, Tognin S, Villa A, Marchisio P C, Altieri D C. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nature Cell Biology, 1999, 1(8): 461-466.

[16]Barrett R M, Colnaghi R, Wheatley S P. Threonine 48 in the BIR domain of survivin is critical to its mitotic and anti-apoptotic activities and can be phosphorylated by CK2 in vitro. Cell Cycle, 2011, 10(3): 538-548.

[17]Wang X G, Yu J F, Zhang Y, Gong D Q, Gu Z L. Identification and characterization of microRNA from chicken adipose tissue and skeletal muscle. Poultry Science, 2012, 91(1): 139-149.

[18]Li T, Wu R, Zhang Y, Zhu D. A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics, 2011, 12: 186.

[19]Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P, Burge C B. Prediction of mammalian microRNA targets. Cell, 2003, 115(7): 787-798.

[20]Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1): 15-20.

[21]Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 2005, 33(20): e179.

[22]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25(4): 402-408.

[23]Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty K E, Lawson N D. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature, 2010, 464(7292): 1196-1200.

[24]Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 2005, 436(7048): 214-220.

[25]Zhao Y, Ransom J F, Li A, Vedantham V, von Drehle M, Muth A N, Tsuchihashi T, McManus M T, Schwartz R J, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 2007, 129(2): 303-317.

[26]Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nature Cell Biology, 2006, 8(3): 278-284.

[27]Stern-Ginossar N, Gur C, Biton M, Horwitz E, Elboim M, Stanietsky N, Mandelboim M, Mandelboim O. Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nature Immunology, 2008, 9(9): 1065-1073.
[1] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[2] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[3] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[4] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[5] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[6] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[7] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[8] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[9] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[10] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[11] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[12] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[13] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
[14] YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279.
[15] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!