Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (6): 1272-1279.doi: 10.3864/j.issn.0578-1752.2013.06.022

• VETERINARY SCIENCE • Previous Articles     Next Articles

Study on Induction of Porcine Putative Embryonic Germ Cells into Nerve Cells in vitro

 CONG  Yi-Mei, MA  Jing, SUN  Rui-Zhen, WANG  Jian-Yu, XUE  Bing-Hua, HU  Kui, YIN  Zhi, LIU  Zhong-Hua   

  1. College of Life Science, Northeast Agricultural University of China, Harbin 150030
  • Received:2012-10-31 Online:2013-03-15 Published:2013-02-07

Abstract: 【Objective】The objective of the study is to detect the potential of porcine putative embryonic germ cells differentiating into nerve cells. 【Method】Co-culture of Gonad-mesonephros (GM) region stromal cells and primordial germ cells was used to get porcine putative embryonic germ cells. Directional differentiation method was adopted for neural differentiation. 【Result】 Compared with MEF , GM region stromal cells as feeder could support the growth of porcine putative embryonic germ cells with no significant difference in the proliferation of embryonic germ cells. Porcine putative embryonic germ cells had strong AP activity, Q-PCR results indicated the expression of Oct4, Sox2 and Nanog genes. Proliferating ability of porcine putative embryonic germ cells showed a "S" type, namely the growth of latency, logarithmic phase and plateau phase. Embryoid body could be derived after suspending culture of porcine putative embryonic germ cells in vitro. After induction, porcine putative embryonic germ cells could differentiate into a variety of neural cell types with expression of neural stem cells, neurons and glial cells markers.【Conclusion】These results indicate that porcine putative embryonic germ cells can be derived from porcine early gonadal and have the ability of differentiating into a variety of neural lineage cells in vitro.

Key words: putative embryonic germ cells , induce in vitro , nerve cells , pig

[1]Evans M J, Kaufman M H, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292(5819): 154-156.

[2]Martin G R, Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceeding of National Academy Science of United State of America, 1981, 78(12), 7634-7638.

[3]Matsui Y, Zsebo K, Hogan B, Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 1992, 70(5): 841-847.

[4]Resnick J, Bixler L, Cheng L, Donovan P, Long-term proliferation of mouse primordial germ cells in culture. Nature, 1992, 359 (6395): 550-551.

[5]Takahashi K, Yamanaka S,. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126: 663-676.

[6]Evans M J, Notatianni E, Laurie S, Moor R M. Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocyst. Theriogenology, 1990, 33(1): 125-128.

[7]Kim H S, Son H Y, Kim S, Lee G S, Park C H, Kang S K. Isolation and initial culture of porcine inner cell masses derived from in vitro-produced blastocysts. Zygote, 2007, 15(1): 55-63.

[8]赵颖, 孔庆然, 刘忠华. 猪胚胎干细胞研究进展. 中国细胞生物学学报, 2010, 32(5): 815-821.

Zhao Y, Kong Q R, Liu H Z. Current progress in porcine embryonic stem cells. Chinese Journal of Cell Biology, 2010, 32(5): 815-821. (in Chinese)

[9]Chen L R, Shiue Y L, Bertolini L. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology, 1999, 52(2): 195-212.

[10]冯秀亮, 高志敏, 杨春荣, 雷安民, 樊敬庄, 窦忠英. 由猪囊胚内细胞团分离胚胎干细胞的研究. 西北农林科技大学学报, 2003, 31(3): 5-10.

Feng X L, Gao Z M, Yang C R, Lei A M, Fan J Z, Dou Z Y. Isolation of embryonic stem cells from inner cell mass of porcine blastocysts. Jourhal of Northwest A & F University Culture, 2003, 31(3): 5-10. (in Chinese)

[11]董晓, 王占贺, 王端云, 郑行. 猪胚胎干细胞培养、分离和传代. 农业生物技术学报, 2003, 11(3): 263-267.

Dong X, Wang Z H, Wang D Y, Zheng X. Culture, isolation and passage of porcine embryonic stem cells. Journal of Agricultural Biotechnology, 2003, 11(3): 263-267. (in Chinese)

[12]Shim S, Han D, Yang J, Lee B, Kim S, Shim H, Lee H, Derivation of embryonic germ cells from post migratory primordial germ cells, and methylation analysis of their imprinted genes by bisulfite genomic sequencing. Molecules and Cells, 2008, 25(3), 358-367.

[13]Piedrahita J, Moore C, Oetama B, Lee C K, Scales N, Jagdeece R, Bazer F, Ott T. Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biology of Reproduction, 1998, 58 (5), 1321-1329.

[14]Tsung H, Du Z, Rui R, Li X, Bao L, Wu J, Bao S, Yao Z. The culture and establishment of embryonic germ (EG) cell lines from Chinese mini swine. Cell Research, 2003, 13 (3): 195-202.

[15] Petkov S G, Marks H, Klein T, Garci R S, Gao Y, Stunnenberg H, Hyttel P. In vitro culture and characterization of putative porcine embryonic germ cells derived from domestic breeds and Yucatan mini pig embryos at Days 20-24 of gestation. Stem Cell Research, 2011, 6(3): 226-237.

[16]况玲, 冯书堂, 余四九, 牟玉莲, 张勇. 猪胚胎多能性干细胞的分离培养. 中国兽医科技, 2004, 34(7): 55-59.

Kuang L, Feng S T, Yu S J, Mu Y L, Zhang Y. Isolation of pluripotent stem cells from cultured porcine germ cells, Chinese Journal of Veterinary Science and Technology, 2004, 34(7): 55-59. (in Chinese)

[17] Pei D Q, Esteban M A, Xu J Y. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. The Journal of Biological Technology, 2009, 284(26): 17634-17640.

[18] Ezashia T, Telugua B P V L, Alexenkoa A P, Sachdevb S, Sinhaa S, Robertsa R M. Derivation of induced pluripotent stem cells from pig somatic cells. Proceeding of National Academy Science of United State of America, 2009, 106(27): 10993-10998.

[19]Eiselleova L, Peterkova I, Slaninova I, Neradjl J, Hampl A, Dvorak P. Comparative study of mouse and human feeder cells for human embryonic stem cells. International Journal of Developmental Biology, 2008, 52(4): 353-363.

[20]Lee C K, Piedrahita J A. Effects of growth factors and feeder cells on porcine primordial germ cells in vitro. Cloning, 2000, 2(4): 197-205.

[21]Spiller C, Wilhelm D, Koopman P. Cell cycle analysis of fetal germ cells during sex differentiation in mice. Biology of the Cell, 2009, 101(3): 587-598.

[22]Western P, Miles D, Van Den Bergen J, Burton M, Sinclair A. Dynamic regulation of mitotic arrest in fetal male germ cells. Stem Cells, 2008, 26(3): 339-347.

[23] Ewen K A, Koopmana P. Mouse germ cell development: From specification to sex determination. Molecular and Cellular Endocrinology, 2009, 323(1): 76-93.

[24]Sun Y, Li H, Yang H. Mechanisms controlling embryonic stem cell self-renewal and differentiation. Critical Reviews in Eukaryotic Gene Expression, 2006, 16 (3): 211-231.

[25]Ying Q L, Stavridis M, Griffiths D. Conversion of embryonic stemcells into neuroectodermal precursors in adherent monoculture. Nature Biotechnology, 2003, 21 (2): 183-186.

[26]Hua B Y, Weicka J P, Yub J Y. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proceeding of National Academy Science of United State of America, 2010, 107(9): 4335-4340.

[27]Kriks S, Shim J W, Piao J H. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 2011, 480: 547-551.

[28]Chambers S M, Fasano C A, Papapetrou E P. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 2009, 27(3): 275-280.
[1] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[4] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[5] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[6] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[7] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
[8] TANG ZhenShuang,YIN Dong,YIN LiLin,MA YunLong,XIANG Tao,ZHU MengJin,YU Mei,LIU XiaoLei,LI XinYun,QIU XiaoTian,ZHAO ShuHong. To Evaluate the “Two-Step” Genomic Selection Strategy in Pig by Simulation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4677-4684.
[9] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[10] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
[11] DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342.
[12] YU ZhengWang,ZHOU ZhongXin. Functions of Antibacterial and Inducing Defense Peptide Expression of Medium-Chain Fatty Acid and Its Application in Piglet Feeds [J]. Scientia Agricultura Sinica, 2021, 54(13): 2895-2905.
[13] QIN BenYuan,YANG Yang,ZHANG YanWei,LIU Min,ZHANG WanFeng,WANG HaiZhen,WU YiQi,ZHANG XueLian,CAI ChunBo,GAO PengFei,GUO XiaoHong,LI BuGao,CAO GuoQing. Isolation, Culture, Identification and Biological Characteristics of Pig Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(8): 1664-1676.
[14] YaoQun WU,ShaoKang CHEN,XiHui SHENG,XiaoLong QI,XiangGuo WANG,HeMin NI,Yong GUO,ChuDuan WANG,Kai XING. Differential Expression of mRNA and lncRNA in Longissimus Dorsi Muscle of Songliao Black Pig and Landrace Pig Based on High-Throughput Sequencing Technique [J]. Scientia Agricultura Sinica, 2020, 53(4): 836-847.
[15] ZHANG TieYing,ZHANG LiYang,LIU JunLi,LIAO ChaoYong,LÜ Lin,LIAO XiuDong,LUO XuGang. A Survey on Distribution of Arsenic Contents in Feedstuffs for Livestock and Poultry in China [J]. Scientia Agricultura Sinica, 2020, 53(21): 4507-4515.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!