Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (6): 1201-1207.doi: 10.3864/j.issn.0578-1752.2013.06.013

• HORTICULTURE • Previous Articles     Next Articles

Respiratory Changes During Dormancy of Grape Buds

 CONG  Shen, WANG  Hai-Bo, WANG  Xiao-Di, WANG  Bao-Liang, ZHENG  Xiao-Cui, SHI  Xiang-Bin, LIU  Wan-Chun, LIU  Feng-Zhi   

  1. Fruit Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops(Germplasm Resources Utilization) , Ministry of Agriculture, Xingcheng 125100, Liaoning
  • Received:2012-12-11 Online:2013-03-15 Published:2013-01-17

Abstract: 【Objective】The relationship between respiration and dormancy release of grape bud was discussed for the purpose of laying a theoretical foundation for the artificial control technology of dormancy. 【Method】Respiration inhibitors and oxygen electrode were used to investigate the respiratory changes during dormancy in grape buds (high chilling requirement grape V. vinifera-V.labrusca cv. Summer Black Seedless and low chilling requirement grape V. vinifera cv. Jingmi). 【Result】Different chilling requirement grape cultivars had the similar respiration rate, pathway rate and change tendency. Respiration rate and pathway of low chilling requirement grape Jingmi changed notably about 20 days before high chilling requirement grape Summer Black Seedless, and rapider. The change range of Jingmi was lower than Summer Black Seedless. The variation in total respiratory rate showed single peak curves. EMP (embden-meyerhof-parnas pathway)-TCA (tricarboxylic acid cycle) increased during dormancy release. On level of electron transport, alternative pathway and residual pathway were activated during dormancy release.【Conclusion】Different chilling requirement grape cultivars had different sensitivities, low chilling requirement grape cultivars were more sensitive to low temperature. EMP-TCA was the key of dormancy release. Alternative pathway and residual pathway might be an important role in dormancy release.

Key words: grape , dormancy , chilling requirement , respiratory , respiratory pathway

[1]Faust M, Erez A, Rowland L J, Wang S Y, Norman H A. Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance, and release. HortScience, 1997, 32: 623-629.

[2]高东升, 束怀瑞, 李宪利. 几种适宜设施栽培果树需冷量的研究. 园艺学报, 2001, 28(4) : 283-289.

Gao D S, Shu H R, Li X L. A study on bud chilling requirements of fruit trees in greenhouse. Acta Horticulturae Sinica, 2001, 28(4): 283-289. (in Chinese)

[3]Campoy J A, Ruiz D, Egea J. Dormancy in temperate fruit trees in a global warming context a review. Scientia Horticulturae, 2011, 130: 357-372.

[4]徐一兰, 官春云, 谭太龙. 油菜种子油分形成的生理生化基础研究进展. 中国农学通报, 2006, 22(4): 255-259.

Xu Y L, Guan C Y, Tan T L. Study on physiological and biochemical basis of oil forming in rapeseed. Chinese Agricultural Science Bulletin, 2006, 22(4): 255-259. (in Chinese)

[5]Huang J, Zhang H S, Wang J F, Yang J S. Molecular cloning and characterization of rice 6-phosphogluconate dehydrogenase gene that is up-regulated by salt stress. Molecular Biology Reports, 2003, 30: 223-227.

[6]敬兰花, 种康, 杨成德, 吕忠恕. 苹果的抗氰呼吸与果实呼吸跃变的关系. 西北植物学报, 1994, 14(2): 117-122.

Jing L H, Zhong K, Yang C D, Lü Z S. Relationship between CN-resistant respiration and climacteric of fruit in apple. Acta Botanica Boreali-Occidentalia Sinica, 1994, 14(2): 117-122. (in Chinese)

[7]浦心春, 韩建国, 李敏, 杜光璞, 倪小琴. 结篓草种子打破休眠过程中呼吸途径的研究. 草业学报, 1996, 3: 56-60.

Pu X C, Han J G, Li M, Du G P, Ni X Q. Studies on respiratory pathways of zoysiagrass seed when breaking dormancy. Acta Prataculturae Sinica, 1996, 3: 56-60. (in Chinese)

[8]Bogatek R, Rychter A. Respiratory activity of apple seeds during dormancy removal and germination. Physiologie Vegetale, 1984, 22(2): 181-189.

[9]Young E. Changes in respiration rate and energy of activation after chilling and forcing dormant apple trees. Journal of the American Society for Horticultural Science, 1990, 115(5): 809-814.

[10]高东升.设施果树自然休眠生物学研究[D]. 泰安: 山东农业大学, 2001.

Gao D S. Study on the bud dormancy of the deciduous fruit[D]. Tai’ an: Shandong Agricultural University, 2001. (in Chinese)

[11]李霞, 李宪利, 高东升, 杨秀萍. 遮荫对休眠期大樱桃芽呼吸代谢的影响研究. 中国生态农业学报, 2005, 13(1): 57-60.

Li X, Li X L, Gao D S, Yang X P. Effects of shading on the respiration metabolism of cherry buds in dormant period. Chinese Journal of Eco-Agriculture, 2005, 13(1): 57-59. (in Chinese)

[12]李政红, 高东升, 李宪利. 桃芽自然休眠与两条主要电子传递途径变化的关系.植物生理与分子生物学学报, 2006, 32(2): 156-162.

Li Z H, Gao D S, Li X L. The relation between en-dormancy and changes in two main electron transport pathways of nectarine (Prunus persica var. nectariana) buds. Journal of Plant Physiology and Molecular Biology, 2006, 32(2): 156-162. (in Chinese)

[13]李冬梅, 谭秋平, 张海森, 高东升, 于芹. 光周期对油桃叶芽休眠诱导期抗氰呼吸的影响. 应用与环境生物学报, 2010, 16(6): 775-778.

Li D M, Tan Q P, Zhang H S, Gao D S, Yu Q. Effects of photoperiod on cyanide-resistant respiration of nectarine leaf buds during dormancy induction. Chinese Journal of Applied & Environmental Biology, 2010, 16(6): 775-778.  (in Chinese)

[14]李冬梅, 张海森, 谭秋平, 李玲, 于芹, 高东升. 短日照对休眠诱导期油桃花芽两条电子传递途径的调控. 应用生态学报, 2011, 22(11): 2849-2854.

Li D M, Zhang H S, Tan Q P, Li L, Yu Q, Gao D S. Regulation effects of short sunlight on two electron transport pathways in nectarine flower bud during dormancy induction. Chinese Journal of Applied Ecology, 2011, 22(11) : 2849-2854. (in Chinese)

[15]于芹, 高东升, 徐小明, 李瑾, 徐臣善. 油桃芽体自然休眠诱导与两条主要电子传递途径的关系, 中国农业科学, 2008, 41(12): 4149-4154.

Yu Q, Gao D S, Xu X M, Li J, Xu C S. Relationship between endodormancy induction and changes in two main electron transport pathways of nectarine buds. Scientia Agricultura Sinica, 2008, 41(12): 4149-4154. (in Chinese)

[16]McPherson H G, Snelgar W P, Manson P J, Snowball A M. Bud resiration and dormancy of Kiwifruit (Actinidia deliciosa). Annals of Botany, 1997, 80: 411-418.

[17]Wang S Y, Faust M. Metabolic activities during dormancy and blooming of deciduous fruit trees. Israel Journal of Botany, 1988, 37: 227-243.

[18]Mohamed H B, Vadel A M, Geuns J, Khemira H. Biochemical changes in dormant grapevine shoot tissues in response to chilling: Possible role in dormancy release. Scientia Horticulturae, 2010, 124: 440-447.

[19]Marquat C, Vandamme M, Gendraud M, Pétal G. Dormancy in vegetative bud of peach: relation between carbohydrate absorption potentials and carbohydrate concentration in the bud during dormancy and its release. Scientia Horticulturae, 1999, 79: 151-162.

[20]Bonhomme M, Rageau R, Lacointe A, Gendraud M. Influences of cold deprivation during dormancy on carbohydrate contents of vegetative and floral primordia and nearby structures of peach buds (Prunus persica L. Batch). Scientia Horticulturae, 105: 223-240.

[21]Keilin T, Pang X, Venkateswari J, Halaly T. Digital expression profiling of grape EST collection leads to new insight into molecular events during grape-bud dormancy release. Plant Science, 2007, 173: 446-457.

[22]Halaly T, Pang X, Batikoff T, Crane O, Keren A, Venkateswari J, Ogrodovitch A, Sadka A, Lavee S, Or E.  Similar mechanisms might be triggered by alternative external stimuli that induce dormancy release in grape buds. Planta, 2008, 228: 79-88.

[23]Pérez F J, Rubio S, Ormeño-Núñez J. Is erratic bud-break in grapevines grown in warm winter areas related to disturbances in mitochondrial respiratory capacity and oxidative metabolism. Functional Plant Biology, 2007, 34: 624-632.

[24]Pérez F J, Vergara R, Or E. On the mechanism of dormancy release in grapevine buds: a comparative study between hydrogen cyanamide and sodium azide. Plant Growth Regular, 2009, 59:145-152.

[25]Ophir R, Pang X, Halaly T, Venkateswari J, Lavee S, Galbraith D, Or E. Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. Plant Molecular Biology, 2009, 71:403-423.
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[5] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[6] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[7] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[8] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[9] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[10] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[11] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[12] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[13] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
[14] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[15] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!