2012-04-26Bombyx mori , serine protease inhibitor , pathogenic microbial-induction , defense,"/> Cloning, Expression and Microbial-Induction Analysis of Bombyx mori Serine Protease Inhibitor BmSPI37

Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (23): 4898-4908.doi: 10.3864/j.issn.0578-1752.2012.23.017

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Cloning, Expression and Microbial-Induction Analysis of Bombyx mori Serine Protease Inhibitor BmSPI37

 LI  You-Shan, ZHAO  Ping, DONG  Zhao-Ming, ZOU  Yong, XIA  Qing-You, XIANG  Zhong-Huai   

  1. State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716
  • Received:2012-04-26 Online:2012-12-01 Published:2012-07-12

Abstract: 【Objective】 The objective of this study is to identify a new protease inhibitor of silkworm (Bombyx mori) and to investigate its function in guarding against invasion of pathogenic microorganisms. 【Method】 T-A cloning, multiple sequence alignment, construction of phylogenetic tree, prokaryotic expression, spatio-temporal expression profile analysis and microbial-induced experiments were performed with BmSPI37. 【Result】 A new serine proteinase inhibitor, named BmSPI37, was cloned and expressed. Spatio-temporal expression profile analysis showed that BmSPI37 expressed highly at the late stage of 5th instar larvae, and expressed highly in the middle silk gland. The expression of BmSPI37 was significantly higher in female than in male during metamorphosis period from pupa to moth. Analysis of the expression of BmSPI37 after infection with Escherichia coli, Bacillus bombysepticus or Beauveria bassiana showed that BmSPI37 was strongly up-regulated.【Conclusion】It is speculated that BmSPI37 is related to defense against pathogenic microorganisms.

Key words: font-size: 10.5pt, mso-bidi-font-size: 10.0pt, mso-font-kerning: 1.0pt, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, mso-bidi-language: AR-SA, 2012-04-26Bombyx mori ')">mso-fareast-font-family: 宋体" lang="EN-US">2012-04-26Bombyx mori , serine protease inhibitor , pathogenic microbial-induction , defense

[1]Lopez-Otin C, Overall C M. Protease degradomics: a new challenge for proteomics. Molecular Cell Biology, 2002, 3(7): 509-519.

[2]Clynen E, Schoofs L, Salzet M. A Review of the most important classes of serine protease inhibitors in insects and leeches. Medicinal Chemistry Reviews, 2005, 2(3): 197-206.

[3]Zhao Y, Sun W, Zhang P, Chi H, Zhang M J, Song C Q, Ma X, Shang Y, Wang B, Hu Y, Hao Z, Huhmer A F, Meng F, L'Hernault S W, He S M, Dong M Q, Miao L. Nematode sperm maturation triggered by protease involves sperm-secreted serine protease inhibitor (Serpin). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5): 1542-1547.

[4]迟  庆, 伦永志. Kazal型人类丝氨酸蛋白酶抑制因子研究现状. 中华临床医师杂志, 2010, 4(8): 1331-1333.

Chi Q, Lun Y Z. The research of kazal-type serine protease inhibitors in human. Chinese Journal of Clinicians, 2010, 4(8): 1331-1333. (in Chinese)

[5]Park H J, Seong Y M, Choi J Y, Kang S, Rhim H. Alzheimer's disease-associated amyloid beta interacts with the human serine protease HtrA2/Omi. Neuroscience Letters, 2004, 357(1): 63-67.

[6]Hook G, Hook V, Kindy M. The cysteine protease inhibitor, E64d, reduces brain amyloid-β and improves memory deficits in Alzheimer's disease animal models by inhibiting cathepsin B, but not BACE1, β-secretase activity. Journal of Alzheimer's Disease, 2011, 26(2): 387-408.

[7]Kim J T, Song E Y, Chung K S, Kang M A, Kim J W, Kim S J, Yeom Y I, Kim J H, Kim K H, Lee H G. Up-regulation and clinical significance of serine protease kallikrein 6 in colon cancer. Cancer, 2011, 117(12): 2608-2619.

[8]Krowarsch D, Cierpicki T, Jelen F, Otlewski J. Canonical protein inhibitors of serine proteases. Cellular and Molecular Life Science, 2003, 60(11): 2427-2444.

[9]Hibbetts K, Hines B, Williams D. An overview of proteinase inhibitors. Journal of Veterinary Internal Medicine, 1999, 13(4): 302-308.

[10]Magdolen V, de Prada N A, Sperl S, Muehlenweg B, Luther T, Wilhelm O G, Magdolen U, Graeff H, Reuning U, Schmitt M. Natural and synthetic inhibitors of the tumor-associated serine protease urokinase-type plasminogen activator. Advanced in Experimental Medecine and Biology, 2000, 477: 331-341.

[11]Roose J P, Van Noorden C J. Synthetic protease inhibitors: promising compounds to arrest pathobiologic processes. The Journal of Laboratory and Clinical Medecine, 1995, 125(4): 433-441.

[12]Engles L. Review and application of serine protease inhibition in coronary artery bypass graft surgery. American Journal of Health-System Pharmacy, 2005, 62(18 Suppl. 4): 9-14.

[13]Dunse K M, Stevens J A, Lay F T, Gaspar Y M, Heath R L, Anderson M A. Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(34): 15011-15015.

[14]王亚伟, 欧阳学农, 余宗阳. TRA IL联合蛋白酶抑制剂MG132诱导肺癌A549细胞凋亡的实验研究. 临床肿瘤学杂志, 2011, 16(4): 294-297.

Wang Y W, Ouyang X N, Yu Z Y. An experimental study of the effect of TRA IL combined with proteasome inhibitor MG132 on lung adenocarcinoma cell line A549. Chinese Clinical Oncology, 2011, 16(4): 294-297. (in Chinese)

[15]叶兼菱, 李荣贵, 郭道森, 赵博光. 半胱氨酸蛋白酶抑制剂防治桑天牛的室内生测. 林业科技开发, 2011, 25(1): 40-42.

Ye Q L, Li R G, Guo D S, Zhao B G. Bioassay of cysteine protease inhibitor for controlling Apripona germari (Hope). China Forestry Science and Technology, 2011, 25(1): 40-42. (in Chinese)

[16]Eguchi M. Inhibition of fungal protease by haemolymph protease inhibitors of the silkworm, Bombyx mori. Applied Entomology and Zoology, 1982, 17(4): 589-590.

[17]Kanost M R. Serine proteinase inhibitors in arthropod immunity. Development and Comparative Immunology, 1999, 23(4/5): 291-301.

[18]Yoshida S, Yamashita M, Yonehara S, Eguchi M. Properties of fungal protease inhibitors from the integument and haemolymph of the silkworm and effect of an inhibitor on the fungal growth. Comparative Biochemistry and Physiology, 1990, 95B(3): 559-564.

[19]Eguchi M, Itoh M, Chou L Y, Nishino K. Purification and characterization of a fungal protease specific protein inhibitor (FPI-F) in the silkworm heamolymph. Comparative Biochemistry and Physiology, 1993, 104B(3): 537-543.

[20]Zhao P, Dong Z, Duan J, Wang G, Wang L, Li Y, Xiang Z, Xia Q. Genome-wide identification and immune response analysis of serine protease inhibitor genes in the silkworm, Bombyx mori. PLoS One, 2012, 7(2): e31168.

[21]Schagger H. Tricine-SDS-PAGE. Nature Protoccols, 2006, 1(1): 16-22.

[22]Pham T N, Hayashi K, Takano R, Itoh M, Eguchi M, Shibata H, Tanaka T, Hara S. A new family of serine protease inhibitors (Bombyx family) as established from the unique topological relation between the positions of disulphide bridges and reactive site. Journal of Biochemistry, 1996, 119(3): 428-434.

[23]Bania J, Stachowiak D, Polanowski A. Primary structure and properties of the cathepsin G/chymotrypsin inhibitor from the larval hemolymph of Apis mellifera. European Journal of Biochemistry, 1999, 262(3): 680-687.

[24]Fogaca A C, Almeida I C, Eberlin M N, Tanaka A S, Bulet P, Daffre S. Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases. Peptides, 2006, 27(4): 667-674.

[25]Huang K, Strynadka N C, Bernard V D, Peanasky R J, James M N. The molecular structure of the complex of Ascaris chymotrypsin/ elastase inhibitor with porcine elastase. Structure, 1994, 2(7): 679-689.

[26]Kellenberger C, Boudier C, Bermudez I, Bieth J G, Luu B, Hietter H. Serine protease inhibition by insect peptides containing a cysteine knot and a triple-stranded β-sheet. The Journal of Biological Chemistry, 1995, 270(43): 25514-25519.

[27]Nirmala X, Mita K, Vanisree V, Zurovec M, Sehnal F. Identification of four small molecular mass proteins in the silk of Bombyx mori. Insect Molecular Biology, 2001, 10(5): 437-445.

[28]Kurioka A, Yamazaki M, Hirano H. Primary structure and possible functions of a trypsin inhibitor of Bombyx mori. European Journal of Biochemistry, 1999, 259(1/2): 120-126.

[29]Nirmala X, Kodrik D, Zurovec M, Sehnal F. Insect silk contains both a Kunitz-type and a unique Kazal-type proteinase inhibitor. European Journal of Biochemistry, 2001, 268(7): 2064-2073.

[30]Shiba H, Uchida D, Kobayashi H, Natori M. Involvement of cathepsin B- and L-like proteinases in silk gland histolysis during metamorphosis of Bombyx mori. Archives of Biochemistry and Biophysics, 2001, 390(1): 28-34.

[31]Fullaondo A, Garcia-Sanchez S, Sanz-Parra A, Recio E, Lee S Y, Gubb D. Spn1 regulates the GNBP3-dependent Toll signaling pathway in Drosophila melanogaster. Molecular and Cellelar Biology, 2011, 31(14): 2960-2972.

[32]Soderhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Current Opinion in Immunology, 1998, 10(1): 23-28.

[33]Ishii K, Hamamoto H, Imamura K, Adachi T, Shoji M, Nakayama K, Sekimizu K. Porphyromonas gingivalis peptidoglycans induce excessive activation of the innate immune system in silkworm larvae. Journal of Biological Chemistry, 2010, 285(43): 33338-33347.

[34]An C, Kanost M R. Manduca sexta serpin-5 regulates prophenoloxidase activation and the Toll signaling pathway by inhibiting hemolymph proteinase HP6. Insect Biochemistry and Molecular Biology, 2010, 40(9): 683-689.

[35]Tang H, Kambris Z, Lemaitre B, Hashimoto C. A serpin that regulates immune melanization in the respiratory system of Drosophila. Developmental Cell, 2008, 15(4): 617-626.

[36]Travis J, Potempa J, Maeda H. Are bacterial proteinases pathogenic factors? Trends of Microbiology, 1995, 3(10): 405-407.

[37]Leger R J S. The role of cuticle-degrading proteases in fungal pathogenesis of insects. Canidian Journal of Botany, 1995, 73(Suppl. 1): S1119-S1125.

[38]Donpudsa S, Tassanakajon A, Rimphanitchayakit V. Domain inhibitory and bacteriostatic activities of the five-domain Kazal-type serine proteinase inhibitor from black tiger shrimp Penaeus monodon. Developmental and Comparative Immunology, 2009, 33(4): 481-488.

[39]Wang Z H, Zhao X F, Wang J X. Characterization, kinetics, and possible function of Kazal-type proteinase inhibitors of Chinese white shrimp, Fenneropenaeus chinensis. Fish and Shellfish Immunology, 2009, 26(6): 885-897.

[40]Augustin R, Siebert S, Bosch T C G. Identification of a kazal-type serine protease inhibitor with potent anti-staphylococcal activity as part of Hydra's innate immune system. Developmental and Comparative Immunology, 2009, 33(7): 830-837.

[41]Zou Z, Picheng Z, Weng H, Mita K, Jiang H. A comparative analysis of serpin genes in the silkworm genome. Genomics, 2009, 93(4): 367-375.

[42]Zhu L, Song L, Chang Y, Xu W, Wu L. Molecular cloning, characterization and expression of a novel serine proteinase inhibitor gene in bay scallops (Argopecten irradians, Lamarck 1819). Fish and Shellfish Immunology, 2006, 20(3): 320-331.

[43]Kong H J, Cho H K, Park E M, Hong G E, Kim Y O, Nam B H, Kim W J, Lee S J, Han H S, Jang I K, Lee C H, Cheong J, Choi T J. Molecular cloning of Kazal-type proteinase inhibitor of the shrimp Fenneropenaeus chinensis. Fish and Shellfish Immunology, 2009, 26(1): 109-114.

[44]Tanaka H, Ishibashi J, Fujita K, Nakajima Y, Sagisaka A, Tomimoto K, Suzuki N, Yoshiyama M, Kaneko Y, Iwasaki T, Sunagawa T, Yamaji K, Asaoka A, Mita K, Yamakawa M. A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochemistry and Molecular Biology, 2008, 38(12): 1087-1110.
[1] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[2] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
[3] YAN DuoZi,CAI Ni,WANG Feng,NONG XiangQun,WANG GuangJun,TU XiongBing,ZHANG ZeHua. Expression in vitro of Metarhizium anisopliae Adhesin MAD1 and Its Effect on Inducing Response in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(4): 744-753.
[4] ZHENG FengSheng,WANG HaiHua,WU QingTao,SHEN Quan,TIAN JianHong,PENG XiXu,TANG XinKe. Genome-Wide Identification of VQ Gene Family in Fagopyrum tataricum and Its Expression Profiles in Response to Leaf Spot Pathogens [J]. Scientia Agricultura Sinica, 2021, 54(19): 4048-4060.
[5] YU ZhengWang,ZHOU ZhongXin. Functions of Antibacterial and Inducing Defense Peptide Expression of Medium-Chain Fatty Acid and Its Application in Piglet Feeds [J]. Scientia Agricultura Sinica, 2021, 54(13): 2895-2905.
[6] QI Yue,LÜ JunYuan,ZHANG Yue,WEI Jie,ZHANG Na,YANG WenXiang,LIU DaQun. Puccinia triticina Effector Protein Pt18906 Triggered Two-Layer Defense Reaction in TcLr27+31 [J]. Scientia Agricultura Sinica, 2020, 53(12): 2371-2384.
[7] AN JunXia,ZHAO Yu,ZHANG ZhengKun,SHI HaiPeng,JI DongMing,CAO HongYi,DU Qian,LI QiYun. Induction of Cold Tolerance in Rice at the Breeding Stage by Gongzhulingmycin [J]. Scientia Agricultura Sinica, 2020, 53(11): 2195-2206.
[8] HE YuJuan, JU Di, WANG Yue, YANG XueQing, WANG XiaoQi . Compositive and Inductive Expression Patterns of Protease Inhibitor Genes OsLTPL164 and OsLTPL151 in Rice (Oryza sativa) [J]. Scientia Agricultura Sinica, 2018, 51(12): 2311-2321.
[9] Feng YANG, ChuanWu CHEN, QiJun FAN, ChunMei SHI, ZongZhou XIE, DaYong GUO, JiHong LIU. Influence of Temperature and Polyamines on Occurrence of Citrus Canker Disease and Underlying Mechanisms [J]. Scientia Agricultura Sinica, 2018, 51(10): 1899-1907.
[10] WEI ZhouLing, PENG HaoRan, PAN Qi, ZHANG YongZhi, PU YunDan, WU GenTu, QING Ling, SUN XianChao. Subcellular Localization of the Ribosome-Inactivating Protein α-MC and Its Antiviral Effect on TMV [J]. Scientia Agricultura Sinica, 2017, 50(5): 840-848.
[11] ZHOU JingLong, FENG ZiLi, FENG HongJie, LI YunQing, YUAN Yuan, LI ZhiFang, WEI Feng, SHI YongQiang, ZHAO LiHong, SUN ZhengXiang, ZHU HeQin, ZHOU Yi. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium Bacillus cereus YUPP-10 Against Verticillium Wilt in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2017, 50(14): 2717-2727.
[12] ZHOU Yu, LIU Jia-jia, ZHANG Pan-pan, QU Yang, ZHANG Ji-ru-fei, ZHU Ming-qi, FENG Bai-li. Response of Leaf Defensive Enzymes and Antioxidant to Smut Fungus Stress in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2016, 49(17): 3298-3307.
[13] GENG Shuai-feng, LI Ai-li, MAO Long. Research Progress on the Roles of RNA-Directed DNA Methylation Pathway in Plant Defense [J]. Scientia Agricultura Sinica, 2015, 48(S): 16-22.
[14] WANG Guo-jiao, WANG Jia-yu, MA Dian-rong, MIAO Wei, ZHAO Ming-hui, CHEN Wen-fu. Responses of Antioxidant System to Cold Water Stress in Weedy and Cultivated Rice with Different Chilling Sensitivity [J]. Scientia Agricultura Sinica, 2015, 48(8): 1660-1668.
[15] WANG Hong-1, LIN Jing-1, LIU Gang-2, LI Chun-Xia-2, LUO Chang-Guo-3, LI Gang-Bo-2, ZHANG Zhen-2, CHANG You-Hong-1. Induced etr1-1 Expression in Petunias is Responsible for Its Tolerance to Botrytis cinerea [J]. Scientia Agricultura Sinica, 2014, 47(8): 1502-1511.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!