Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (S): 16-22.doi: 10.3864/j.issn.0578-1752.2015.S.002

Previous Articles     Next Articles

Research Progress on the Roles of RNA-Directed DNA Methylation Pathway in Plant Defense

GENG Shuai-feng, LI Ai-li, MAO Long   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081
  • Received:2015-09-21 Online:2015-10-20 Published:2015-10-20

Abstract: RNA-directed DNA methylation (RdDM) is an epigenetic process in plants that relies on two core proteins: Dicer-Like 3 (DCL3), which processes long double-stranded RNAs (dsRNAs) into siRNAs, and Argonaute 4 (AGO4), which is involved in siRNA effector functions. RdDM also depends on a specialized transcriptional machinery that is centred around two plant-specific RNA polymerase II (Pol II)-related enzymes called Pol IV and Pol V. Recently, RdDM is found to be involved in plant defense. In this paper, we present an up-to-date overview on RdDM and its related genes during plant defense. We also provide opinions on future research directions for crop defense and breeding.

Key words: RdDM, siRNA, epigenetic modification, plant defense

[1]    Jones J D, Dangl J L. The plant immune system. Nature, 2006, 444: 323-329.
[2]    Katagiri F, Tsuda K. Understanding the plant immune system. Molecular Plant-Microbe Interactions, 2010, 23(12): 1531-1536.
[3]    Dodds P N, Rathjen J P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics, 2010, 11: 539-548.
[4]    Ruiz-Ferrer V, Voinnet O. Roles of plant small RNAs in biotic stress responses. Annual Review of Plant Biology, 2009, 60: 485-510.
[5]    Seo J K, Wu J G, Lii Y F, Li Y, Jin H L. Contribution of small RNA pathway components in plant immunity. Molecular Plant-Microbe Interactions, 2013, 26(6): 617-625.
[6]    Staiger D, Korneli C, Lummer M, Navarro L. Emerging role for RNA-based regulation in plant immunity. New Phytologist, 2013, 197: 394-404.
[7]    Weiberg A, Wang M, Bellinger M, Jin H L. Small RNAs: a new paradigm in plant-microbe interactions. Annual Review of Phytopathology, 2014, 52: 495-516.
[8]    Yang L, Huang H. Roles of small RNAs in plant disease resistance. Journal of Integrative Plant Biology, 2014, 56(10): 962-970.
[9]    Sarkies P, Miska E A. Small RNAs break out: the molecular cell biology of mobile small RNAs. Nature Reviews Molecular Cell Biology, 2014, 15: 525-535.
[10]   Knip M, Constantin M E, Thordal-Christensen H. Trans-kingdom cross-talk: small RNAs on the move. PLoS Genetics, 2014, 10(9): e1004602.
[11]   Weiberg A, Bellinger M, Jin H L. Conversations between kingdoms: small RNAs. Current Opinion in Biotechnology, 2015, 32: 207-215.
[12]   Buck A H, Coakley G, Simbari F, McSorley H J, Quintana J F, Le Bihan T, Kumar S, Abreu-Goodger C, Lear M, Harcus Y, Ceroni A, Babayan S A, Blaxter M, Ivens A, Maizels R M. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nature Communications, 2014, 5: 5488.
[13]   Weiberg A, Wang M, Lin F M, Zhao H W, Zhang Z H, Kaloshian I, Huang H D, Jin H L. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 2013, 342: 118-123.
[14]   Weiberg A, Jin H L. Small RNAs-the secret agents in the plant-pathogen interactions. Current Opinion in Plant Biology, 2015, 26: 87-94.
[15]   Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones J D. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 2006, 312: 436-439.
[16]   Zhang X M, Zhao H W, Gao S, Wang W C, Katiyar-Agarwal S, Huang H D, Raikhel N, Jin H L. Arabidopsis Argonaute 2    regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Molecular Cell, 2011, 42: 356-366.
[17]   Li Y, Zhang Q Q, Zhang J G, Wu L, Qi Y J, Zhou J M. Identification of miRNAs involved in pathogen-associated molecular pattern- triggered plant innate immunity. Plant Physiology, 2010, 152: 2222-2231.
[18]   Li F, Pignatta D, Bendix C, Brunkard J O, Cohn M M, Tung J, Sun H, Kumar P, Baker B. MicroRNA regulation of plant innate immune receptors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 1790-1795.
[19]   Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A   J, Zhu J K, Staskawicz B J, Jin H L. A pathogen-inducible  endogenous siRNA in plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(47): 18002-18007.
[20]   Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H L. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes & Development, 2007, 21: 3123-3134.
[21]   Yi H, Richards E J. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. The Plant Cell, 2007, 19: 2929-2939.
[22]   Jin H L. Endogenous small RNAs and antibacterial immunity in plants. FEBS Letters, 2008, 582: 2679-2684.
[23]   Padmanabhan C, Zhang X M, Jin H L. Host small RNAs are big contributors to plant innate immunity. Current Opinion in Plant Biology, 2009, 12: 465-472.
[24]   Ding S W. RNA-based antiviral immunity. Nature Reviews Immunology, 2010, 10: 632-644.
[25]   Wessner B, Gryadunov-Masutti L, Tschan H, Bachl N, Roth E. Is there a role for microRNAs in exercise immunology? A synopsis of current literature and future developments. Exercise Immunology Review, 2010, 16: 22-39.
[26]   Henderson I R, Jacobsen S E. Epigenetic inheritance in plants. Nature, 2007, 447: 418-424.
[27]   Zhang X. The epigenetic landscape of plants. Science, 2008, 320: 489-492.
[28]   He G, Elling A A, Deng X W. The epigenome and plant development. Annual Review of Plant Biology, 2011, 62: 411-435.
[29]   Martienssen R A, Colot V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science, 2001, 293: 1070-1074.
[30]   Bird A. DNA methylation patterns and epigenetic memory. Genes & Development, 2002, 16: 6-21.
[31]   Chan S W, Henderson I R, Jacobsen S E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nature Reviews Genetics, 2005, 6: 351-360.
[32]   Law J A, Jacobsen S E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics, 2010, 11: 204-220.
[33]   Cokus S J, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild C D, Pradhan S, Nelson S F, Pellegrini M, Jacobsen S E. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 2008, 452(7184): 215-219.
[34]   Lister R, O’Malley R C, Tonti-Filippini J, Gregory B D, Berry C C, Millar A H, Ecker J R. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 2008, 133: 523-536.
[35]   Rambani A, Rice J H, Liu J Y, Lane T, Ranjan P, Mazarei M, Pantalone V, Stewart CN Jr, Staton M, Hewezi T. The methylome of soybean roots during the compatible interaction with the soybean cyst nematode. Plant Physiology, 2015, 168: 1364-1377.
[36]   Wassenegger M, Heimes S, Riedel L, Sänger H L. RNA-directed de novo methylation of genomic sequences in plants. Cell, 1994, 76: 567-576.
[37]   Mathieu O, Bender J. RNA-directed DNA methylation. Journal of Cell Science, 2004, 117: 4881-4888.
[38]   Law J A, Jacobsen S E. Dynamic DNA methylation. Science, 2009, 323: 1568-1569.
[39]   Chan S W L, Zilberman D, Xie Z X, Johansen L K, Carrington J C, Jacobsen S E. RNA silencing genes control de novo DNA methylation. Science, 2004, 303: 1336.
[40]   Havecker E R, Wallbridgea L M, Hardcastlea T J, Bushb M S, Kellya K A, Dunna R M, Schwachc F, Doonanb J H, Baulcombea D C. The Arabidopsis RNA-directed DNA methylation Argonautes functionally diverge based on their expression and interaction with target loci. The Plant Cell, 2010, 22: 321-334.
[41]   Daxinger L, Kanno T, Bucher E, Winden J, Naumann U, Matzke A J M, Matzke M. A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation. The EMBO Journal, 2009, 28: 48-57.
[42]   Greenberg M V C, Ausin I, Chan S W L, Cokus S J, Cuperus J T, Feng S H, Law J A, Chu C, Pellegrini M, Carrington J C, Jacobsen S E. Identification of genes required for de novo DNA methylation in Arabidopsis. Epigenetics, 2011, 6: 344-354.
[43]   Herr A J, Jensen M B, Dalmay T, Baulcombe D C. RNA polymerase IV directs silencing of endogenous DNA. Science, 2005, 308: 118-120.
[44]   Law J A, Du J M, Hale C J, Feng S H, Krajewski K, Palanca A M, Strahl B D, Patel D J, Jacobsen S E. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature, 2013, 498: 385-389.
[45]   Law J A, Vashisht A A, Wohlschlegel J A, Jacobsen S E. SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV. PLoS Genetics, 2011, 7(7): e1002195.
[46]   Zhang X Y, Henderson I R, Lu C, Green P J, Jacobsen S E. Role of RNA polymerase IV in plant small RNA metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(11): 4536-4541.
[47]   Smith L M, Pontes O, Searle I, Yelina N, Yousafzai F K, Herr A J, Pikaard C S, Baulcombea D C. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. The Plant Cell, 2007, 19: 1507-1521.
[48]   Kasschau K D, Fahlgren N, Chapman E J, Sullivan C M, Cumbie J S, Givan S A, Carrington J C. Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biology, 2007, 5(3): e57.
[49]   Xie Z, Johansen L K, Gustafson A M, Kasschau K D, Lellis A D, Zilberman D, Jacobsen S E, Carrington J C. Genetic and functional diversification of small RNA pathways in plants. PLoS Biology, 2004, 2(5): E104.
[50]   Yu B, Yang Z Y, Li J J, Minakhina S, Yang M C, Padgett R W, Steward R, Chen X M. Methylation as a crucial step in plant microRNA biogenesis. Science, 2005, 307: 932-935.
[51]   Song J J, Smith S K, Hannon G J, Joshua-Tor L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science, 2004, 305: 1434-1437.
[52]   Xie Z X, Khanna K, Ruan S L. Expression of microRNAs and its regulation in plants. Seminars in Cell & Developmental Biology, 2010, 21: 790-797.
[53]   Zheng X W, Zhu J H, Kapoor A, Zhu J K. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. The EMBO Journal, 2007, 26(6): 1691-1701.
[54]   Ye R Q, Wang W, Iki T, Liu C, Wu Y, Ishikawa M, Zhou X P, Qi Y J. Cytoplasmic assembly and selective nuclear import of Arabidopsis Argonaute 4/siRNA complexes. Molecular Cell, 2012, 46: 859-870.
[55]   Wierzbicki A T, Haag J R, Pikaard C S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell, 2008, 135: 635-648.
[56]   Mosher R A, Schwach F, Studholme D, Baulcombe D C. PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8): 3145-3150.
[57]   Zheng B L, Wang Z M, Li S B, Yu B, Liu J Y, Chen X M. Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes & Development, 2009, 23: 2850-2860.
[58]   Wierzbicki A T, Ream T S, Haag J R, Pikaard C S. RNA polymerase V transcription guides ARGONAUTE 4 to chromatin. Nature Genetics, 2009, 41(5): 630-634.
[59]   El-Shami M, Pontier D, Lahmy S, Braun L, Picart C, Vega D, Hakimi M A, Jacobsen S E, Cooke R, Lagrange T. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE- binding platforms in RNAi-related components. Genes & Development, 2007, 21: 2539-2544.
[60]   Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nature Reviews Genetics, 2009, 10: 295-304.
[61]   Johnson L M, Bostick M, Zhang X Y, Kraft E, Henderson I, Callis J, Jacobsen S E. The SRA methyl-cytosine-binding domain links DNA and histone methylation. Current Biology, 2007, 17: 379-384.
[62]   Greenberg M V, Deleris A, Hale C J, Liu A, Feng S H, Jacobsen S E. Interplay between active chromatin marks and RNA-directed DNA methylation in Arabidopsis thaliana. PLoS Genetics, 2013, 9(11): e1003946.
[63]   Bernatavichute Y V, Zhang X Y, Cokus S, Pellegrini M, Jacobsen S E. Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS One, 2008, 3(9): e3156.
[64]   Lindroth A M, Shultis D, Jasencakova Z, Fuchs J, Johnson         L, Schubert D, Patnaik D, Pradhan S, Goodrich J, Schubert I, Jenuwein T, Khorasanizadeh S, Jacobsen S E. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. The EMBO Journal, 2004, 23(21): 4286-4296.
[65]   Zhang X Y, Bernatavichute Y V, Cokus S, Pellegrini M, Jacobsen S  E. Genome-wide analysis of mono-, di- and trimethylation of  histone H3 lysine 4 in Arabidopsis thaliana. Genome Biology, 2009, 10: R62.
[66]   Roudier F, Ahmed I, Berard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, Giraut L, Després B, Drevensek S, Barneche F, Dèrozier S, Brunaud V, Aubourg S, Schnittger A, Bowler C, Martin-Magniette M L, Robin S, Caboche M, Colot V. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. The EMBO Journal, 2011, 30(10): 1928-1938.
[67]   Rajakumara E, Law J A, Simanshu D K, Voigt P, Johnson L M, Reinberg D, Patel D J, Jacobsen S E. A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo. Genes & Development, 2011, 25: 137-152.
[68]   Deleris A, Greenberg M V, Ausin I, Law R W, Moissiard G, Schubert D, Jacobsen S E. Involvement of a Jumonji-C domain-containing histone demethylase in DRM2-mediated maintenance of DNA methylation. EMBO Reports, 2010, 11(12): 950-955.
[69]   Searle I R, Pontes O, Melnyk C W, Smith L M, Baulcombe D C. JMJ14, a JmjC domain protein, is required for RNA silencing and cell-to-cell movement of an RNA silencing signal in Arabidopsis. Genes & Development, 2010, 24: 986-991.
[70]   Fan D, Dai Y, Wang X C, Wang Z J, He H, Yang H C, Cao Y, Deng X W, Ma L G. IBM1, a JmjC domain-containing histone demethylase, is involved in the regulation of RNA-directed DNA methylation through the epigenetic control of RDR2 and DCL3 expression in Arabidopsis. Nucleic Acids Research, 2012, 40(18): 8905-8916.
[71]   Yu A, Lepere G, Jay F Wang J Y, Bapaume L, Wang Y, Abraham A L, Penterman J, Fischer R L, Voinnet O, Navarro L. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(6): 2389-2394.
[72]   Dowen R H, Pelizzola M, Schmitz R J, Lister R, Dowen J M, Nery J R, Dixon J E, Ecker J R. Widespread dynamic DNA methylation in response to biotic stress. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: E2183-E2191.
[73]   Akimoto K, Katakami H, Kim H J, Ogawa E, Sano C M, Wada Y, Sano H. Epigenetic inheritance in rice plants. Annals of Botany, 2007, 100: 205-217.
[74]   Sha A H, Lin X H, Huang J B, Zhang D P. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Molecular Genetics and Genomics, 2005, 273: 484-490.
[75]   Wada Y, Miyamoto K, Kusano T, Sano H. Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Molecular Genetics and Genomics, 2004, 271: 658-666.
[76]   Movahedi A, Sun W B, Zhang J X, Wu X L, Mousavi M, Mohammadi K, Yin T M, Zhuge Q. RNA-directed DNA methylation in plants. Plant Cell Reports, 2015, DOI 10.1007/s00299-015-1839-0.
[77]   Matzke M A, Mosher R A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nature Reviews Genetics, 2014, 15: 394-408.
[78]   Matzke M A, Kanno T, Matzke A J M. RNA-directed DNA methylation: The evolution of a complex epigenetic pathway in flowering plants. Annual Review of Plant Biology, 2015, 66: 243-267.
[79]   Tang G L. siRNA and miRNA: an insight into RISCs. Trends in Biochemical Sciences, 2005, 30(2): 106-114.
[80]   Agorio A, Vera P. ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. The Plant Cell, 2007, 19: 3778-3790.
[81]   Bhattacharjee S, Zamora A, Azhar M T, Sacco M A, Lambert L H, Moffett P. Virus resistance induced by NB-LRR proteins involves Argonaute4-dependent translational control. The Plant Journal, 2009, 58: 940-951.
[82]   López A, Ramírez V, García-Andrade J, Flors V, Vera P. The RNA silencing enzyme RNA polymerase V is required for plant immunity. PLoS Genetics, 2011, 7(12): e1002434.
[83]   Hutvagner G, Simard M J. Argonaute proteins: key players in RNA silencing. Nature Reviews Molecular Cell Biology, 2008, 9: 22-32.
[84]   Mallory A, Vaucheret H. Form, function, and regulation of ARGONAUTE proteins. The Plant Cell, 2010, 22: 3879-3889.
[85]   Le T N, Schumann U, Smith N A, Tiwari S, Au P C, Zhu Q H, Taylor J M, Kazan K, Llewellyn D J, Zhang R, Dennis E S, Wang M B. DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biology, 2014, 15: 458.
[86]   Luna E, Bruce T J, Roberts M R, Flors V, Ton J. Next-generation systemic acquired resistance. Plant Physiology, 2012, 158: 844-853.
[87]   Kakutani T, Munakata K, Richards E J, Hirochika H. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics, 1999, 151: 831-838.
[88]   Fieldes M A, Schaeffer S M, Krech M J, Brown J C. DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax. Theoretical and Applied Genetics, 2005, 111: 136-149.
[89]   Fieldes M A. Heritable elfects of 5-azacytidine treatments on the growth and development of flax (Linum usitatissimum) genotrophs and genotypes. Genome, 1994, 37: 1-11.
[1] NING Yue,MI Xue,CHEN XingYi,SHAO JianHang,ZAN LinSen. Silencing and Overexpressing SMAD Family Member 1 (SMAD1) Gene and Its Effect on Myogenesis in Primary Myoblast of Qinchuan Cattle (Bos taurus) [J]. Scientia Agricultura Sinica, 2019, 52(10): 1818-1829.
[2] LI Zhi-teng, CHANG Guo-bin, XU Lu, MA Teng, CHEN Jing, CHEN Rong, WANG Hong-zhi, LIU Lu, XU Qi, CHEN Guo-hong. Interference Efficiency of Piwi Gene Expression in the Chicken Germ Stem Cells [J]. Scientia Agricultura Sinica, 2016, 49(3): 563-472.
[3] FU Yong-Yao, SHI Fu-Shan, WANG Ji-Hong, YANG Li-Feng, ZHOU Xiang-Mei, YIN Xiao-Min, ZHAO De-Ming. Effects of Prion Protein on the Regulation of Classical and Alternative Activation of BV2 Microglia in vitro [J]. Scientia Agricultura Sinica, 2013, 46(9): 1932-1938.
[4] LU Jian-Xiong, ZHANG Guo-Hua, LI Chang-Hui, CHEN Yan, HUO Sheng-Dong, GUO Peng-Hui, CAI Yong. Construction of siRNA Expression Plasmids Targeting ChREBP Gene and Its Effect on Lipogenesis in Primary Cultured Porcine Adipocytes [J]. Scientia Agricultura Sinica, 2013, 46(24): 5196-5204.
[5] WEI Bo,ZHANG Rong-zhi,LI Ai-li,MAO Long
. Progress in Plant Small RNA Research via High-Throughput Sequencing [J]. Scientia Agricultura Sinica, 2009, 42(11): 3755-3764 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!