Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (23): 4844-4853.doi: 10.3864/j.issn.0578-1752.2012.23.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Changes in Soil Properties, Yield and Trace Gas Emission from a Paddy After Biochar Amendment in Two Consecutive Rice Growing Cycles

 ZHANG  Bin, LIU  Xiao-Yu, PAN  Gen-Xing, ZHENG  Ju-Feng, CHI  Zhong-Zhi, LI  Lian-Qing, ZHANG  Xu-Hui, ZHENG  Jin-Wei   

  1. 1.Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095
    2.Sichuan Academy of Agricultural Science, Chengdu 610066
  • Received:2012-03-09 Online:2012-12-01 Published:2012-05-10

Abstract: 【Objective】The effect of biochar on soil quality, rice yield and trace gas emissions in 2 consecutive rice growing cycles were investigated for providing a scientific basis for sustainable low carbon development of rice agriculture. 【Method】 A field experiment was initiated in a rice farm from Chengdu Plain with 0, 20 and 40 t•hm-2of biochar soil amendment with (240 kg N•hm-2) and without (0 kg N•hm-2) N fertilizer in 2010. Changes in soil fertility properties, rice yield and non-CO2 greenhouse gases emission in a whole rice growing cycle with biochar amendment were monitored throughout 2010-2011.【Result】Biochar amendments significantly increased soil organic carbon, total nitrogen, pH value and decreased bulk density of soil in both rice-growing cycles, when N fertilizer was applied, but it had no changes in rice yield. Biochar effect on CH4 emission varied with N status. Increase of CH4 emission was observed only under low rate of 20 t•hm-2 in the first cycle. However, no increase in CH4 emission was found with N fertilization in the first cycle and even a decrease in the second cycle. With N fertilization, great decrease in N2O emission (by as high as 66% under 40 t•hm-2 of biochar amendment) was evidenced throughout the two cycles. Overall, biochar soil amendment tended to decrease the global warming potential and rice production carbon intensity from the two non-CO2 trace gases in the consecutive two rice cycles, under 40 t•hm-2 in particular. 【Conclusion】Biochar soil amendment at 40 t•hm-2 could be a technical option to reach low carbon intensity and stable rice productivity in rice paddy agriculture.

Key words: biochar , greenhouse gas , global warming potential , carbon intensity , rice paddy , field experiment

[1]Chan K Y, Van Zwieten L, Meszaros I, Downie A, Joseph S. Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 2008, 46: 437-444.

[2]Chan K Y, Van Zwieten L, Meszaros I, Downie A, Joseph S. Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 2007, 45: 629-634.

[3]Lehmann J, Joseph S. Biochar for Environmental Management: Science and Technology. London: Earthscan, 2009: 1-2, 22-24, 54-63.

[4]Karhu K, Mattilab T, Bergströma I, Regina K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short-term pilot field study. Agriculture, Ecosystem and Environment, 2011, 140: 309-313.

[5]Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O,Neill B, Skjemstad J O, Thies J, Luizao F J, Petersen J, Neves E G. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 2006, 70: 1719-1730.

[6]Major J, Rondon M, Molina D, Riha S J, Lehmann J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 2010, 333: 117-128.

[7]Zhang A F, Cui L Q, Pan G X, Li L Q, Hussain Q, Zhang X H, Zheng J W, Crowley D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems and Environment, 2010, 139: 469-475.

[8]Zhang A F, Liu Y M, Pan G X, Hussain Q, Li L Q, Zheng J W, Zhang X H. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil, DOI 10.1007/s11104-011-0957-x.

[9]Lehmann J. A handful of carbon. Nature, 2007, 447: 143-144.

[10]张晗芝, 黄  云, 刘  钢, 许燕萍, 刘金山, 卑其诚, 蔺兴武, 朱建国, 谢祖彬. 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响. 生态环境学报, 2010, 19(11): 2713-2717.

Zhang H Z, Huang Y, Liu G, Xu Y P, Liu J S, Bei Q C, Lin X W, Zhu J G, Xie Z B. Effect of biochar on corn growth, nutrient uptake and soil chemical properties in seeding stage. Ecology and Environmental Scineces, 2010, 19(11): 2713-2717. (in Chinese)

[11]Asai H, Samson B K, Stephan H M, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T. Biochar amendment techniques for upland rice production in Northern Laos 1: Soil physical properties, leaf SPAD and grain yield. Field Crop Research, 2009, 111: 81-84.

[12]Van Zwieten L V, Kimber S, Morris S, Chan K Y, Downie A, Rust J, Joseph S, Cowie A. Effect of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 2010, 327: 235-246.

[13]Lehmann J, Rondon M. Bio-char soil management on highly weathered soils in the humid tropics//Uphoff N T, Ball A S, Fernandes E, Herren H R, Husson O, Laing M V, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J. Biological Approaches to Sustainable Soil Systems. Boca Raton: CRC Press, 2006: 517-530.

[14]Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with biochar-a review. Biology and Fertility of Soils, 2002, 35: 219-230.

[15]Yamato M, Okimori Y, Wibowo I F, Anshori S, Ogawa M. Effects of the application of charred bark of Acacia mangiumon the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science and Plant Nutrition, 2006, 52: 489-495.

[16]Major J, Lehmann J, Rondon M, Goodale C. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Change Biology, 2010, 16: 1366-1379.

[17]Noguera D, Rondón M, Laossi K R, Hoyos V, Lavelle P, de Carvalho M H C, Barot S. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biology and Biochemistry, 2010, 42: 1017-1027.

[18]Hilscher A, Heister K, Siewert C, Knicker H. Mineralization and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Organic Geochemistry, 2009, 40: 332-342.

[19]Knoblauch C, Maarifat A A, Pfeiffer E M, Haefele S M. Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biology and Biochemistry, 2011, 43(9): 1768-1778.

[20]Zhang A F, Bian R J, Pan G X, Cui L Q, Hussain Q, Li L Q, Zheng J W, Zheng J F, Zhang X H, Han X J, Yu X Y. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A ?eld study of 2 consecutive rice growing cycles. Field Crops Research, 2012, 127: 153-160.

[21]Liu Y X, Yang M, Wu Y M, Wang H L, Chen Y X, Wu W X. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. Journal of Soils and Sediments, 2011, 11(6): 930-939.

[22]Wang J Y, Zhang M, Xiong Z Q, Liu P L, Pan G X. Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biology and Fertility of Soils, 2011, 47(8): 887-896.

[23]Feng Y Z, Xu Y P, Yu Y C, Xie Z B, Lin X G. Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biology and Biochemistry, 2011, 43: 1-9.

[24]Bruun E W, Müller-Stöver D, Ambus P, Hauggaard-Nielsen H. Application of biochar to soil and N2O emissions: potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry. European Journal of Soil Science, 2011, 62: 581-589.

[25]Liu X Y, Qu J J, Li L Q, Zhang A F, Zheng J F, Zheng J W, Pan G X. Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?-A cross site ?eld experiment from South China. Ecological Engineering (2012). Dio:10.1016/j. ecoleng.2012. 01.016.

[26]潘根兴, 林振衡, 李恋卿, 张阿凤, 郑金伟, 张旭辉. 试论我国农业和农村有机废弃物生物质炭产业化. 中国农业科技导报, 2011, 13(1): 75-82.

Pan G X, Lin Z H, Li L Q, Zhang A F, Zheng J W, Zhang X H. Perspective on biomass carbon industrialization of organic waste from agriculture and rural areas in China. Journal of Agricultural Science and Technology, 2011, 13(1): 75-82. (in Chinese)

[27]鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.

Bao S D. Soil Agrochemistry Analysis. Beijing: China Agriculture Press, 2000. (in Chinese)

[28]秦晓波, 李玉娥, 刘克樱, 万运帆. 不同施肥处理稻田甲烷和氧化亚氮排放特征. 农业工程学报, 2006, 22(7): 143-148. 

Qin X B, Li Y E, Liu K Y, Wan Y F. Methane and nitrous oxide emission from paddy field under different fertilization treatments. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(7): 143-148. (in Chinese)

[29]Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor M M B, Miller H M, Jr, Chen Z L. Climate Change 2007: The Physical Science Basis. New York: Cambridge University Press, 2007: 498-540.

[30]刘晓雨, 李志鹏, 潘根兴, 李恋卿. 长期不同施肥下太湖地区稻田净温室效应和温室气体排放强度的变化. 农业环境科学学报, 2011, 30(9): 1783-1790.

Liu X Y, Li Z P, Pan G X, Li L Q. Greenhouse gas emission and C intensity for a long-term fertilization rice paddy in Tai Lake Region, China. Journal of Agro-Environment Science, 2011, 30(9): 1783-1790. (in Chinese)

[31]Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems-a review. Mitigation and Adaptation Strategies for Global Change, 2006, 11: 403-427.

[32]Haefelea S M, Konboonc Y, Wongboon W. Effects and fate of biochar from rice residues in rice based systems. Field Crops Research, 2011, 126: 430-440.

[33]刘莹莹, 秦海芝, 李恋卿, 潘根兴, 张旭辉, 郑金伟, 韩晓君, 俞欣妍. 不同作物原料裂解生物质炭对溶液中Cd2+和Pb2+的吸附特性. 生态环境学报, 2012, 21(1): 146-152.

Liu Y Y, Qin H Z, Li L Q, Pan G X, Zhang X H, Zheng J W, Han X J, Yu X Y. Absorption of Cd2+ and Pb2+ in aqueous solution by biochar produced from the pyrolysis of different crop feedstock. Ecology and Environmental Science, 2012, 21(1): 146-152. (in Chinese)

[34]Laird D, Fleming P, Wang B Q, Horton R, Karlen D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 2010, 158: 436-442.

[35]颜晓元, 蔡祖聪. 淹水土壤中甲烷产生的影响因素研究进展. 环境科学进展, 1996, 4(2): 24-32.

Yan X Y, Cai Z C. Advance in study of factors influencing methane production and emission in wetland soils. Advances in Environmental Science, 1996, 4(2): 24-32. (in Chinese)

[36]黄  耀. 中国的温室气体排放、减排措施与对策. 第四纪研究, 2006, 26(5): 722-732.

Huang Y. Emissions of greenhouse gases in China and its reduction strategy. Quaternary Sciences, 2006, 26(5): 722-732. (in Chinese)

[37]Cai Z C, Xing G X, Yan X Y, Xu H, Tsuruta H, Yagi K, Minami K. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant and Soil, 1997, 196: 7-14.

[38]徐  华, 蔡祖聪, 八木一行. 水稻土CH4产生潜力及其影响因素. 土壤学报, 2008, 45(1): 98-104.

Xu H, Cai Z C, Yagi K. Methane production potentials of rice paddy soils and its affecting factors. Acta Pedologica Sinica, 2008, 45(1): 98-104. (in Chinese)

[39]许炳雄, 卢巨祥, 傅桂芬, 李铭珊. 广州地区稻田甲烷排放通量研究. 环境科学研究, 1997, 10(4): 10-14.

Xu B X, Lu J X, Fu G F, Li M S. Study on methane emission flux from paddy rice fields in Guangzhou. Research of Environmental Sciences, 1997, 10(4): 10-14. (in Chinese)

[40]蔡祖聪, 谢德体, 徐  华, 魏朝富, 高  明. 冬灌田影响水稻生长期甲烷排放量的因素分析. 应用生态学报, 2003, 14(5): 705-709.

Cai Z C, Xie D T, Xu H, Wei C F, Gao M. Factors influencing CH4 emissions from a permanently flooded rice field during rice growing period. Chinese Journal of Applied Ecology, 2003, 14(5): 705-709. (in Chinese)

[41]江长胜, 王跃思, 郑循华, 王明星. 稻田甲烷排放影响因素及其研究进展. 土壤通报, 2004, 35(5): 663-669.

Jiang C S, Wang Y S, Zheng X H, Wang M X. Advances in the research on methane emissions from paddy fields and its affecting factors. Chinese Journal of Soil Science, 2004, 35(5): 663-669. (in Chinese)

[42]陈红霞, 杜章留, 郭  伟, 张庆忠. 施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响. 应用生态学报, 2011, 22(11): 2930-2934.

Chen H X, Du Z L, Guo W, Zhang Q Z. Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China Plain. Chinese Journal of Aplied Ecology, 2011, 22(11): 2930-2934. (in Chinese)

[43]石生伟, 李玉娥, 刘运通, 万运帆, 高清竹, 张仲新. 中国稻田CH4和N2O排放及减排整合分析. 中国农业科学, 2010, 43(14): 2923-2936.

Shi S W, Li Y E, Liu Y T, Wan Y F, Gao Q Z, Zhang Z X. CH4 and N2O emission from rice field and mitigation options based on field measurements in China: An integration analysis. Scientia Agricultura Sinica, 2010, 43(14): 2923-2936. (in Chinese)

[44]张广斌, 马  静, 马二登, 徐  华, 蔡祖聪. 尿素施用对稻田土壤甲烷产生、氧化及排放的影响. 土壤, 2010, 42(2): 178-183.

Zhang G B, Ma J, Ma E D, Xu H, Cai Z C. Effects of urea application on methane production, oxidation and emission from a paddy soil. Soils, 2010, 42(2): 178-183. (in Chinese)

[45]焦  燕, 黄  耀, 宗良纲, 周权锁, Ronald L. Sass. 氮肥水平对不同土壤N2O排放的影响. 环境科学, 2008, 29(8): 2094-2098.

Jiao Y, Huang Y, Zong L G, Zhou Q S, Sass R L. Impact of different levels of nitrogen fertilizer on N2O emission from different soils. Environmental Science, 2008, 29(8): 2094-2098. (in Chinese)

[46]Yanai Y, Toyota K, Okazaki M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition, 2007, 53: 181-188.

[47]Cavigelli M A, Robertson G P. Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem. Soil Biology and Biochemistry, 2001, 33: 297-310.
[1] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[2] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[3] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[4] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[5] BIAN RongJun,LIU XiaoYu,ZHENG JuFeng,CHENG Kun,ZHANG XuHui,LI LianQing,PAN GenXing. Chemical Composition and Bioactivity of Dissolvable Organic Matter in Biochars [J]. Scientia Agricultura Sinica, 2022, 55(11): 2174-2186.
[6] MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618.
[7] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[8] ZHANG WeiJian,CYAN ShengJi,CZHANG Jun,CJIANG Yu,CDENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[9] ZHU XiaoQing,AN Jing,MA Ling,CHEN SongLing,LI JiaQi,ZOU HongTao,ZHANG YuLong. Effects of Different Straw Returning Depths on Soil Greenhouse Gas Emission and Maize Yield [J]. Scientia Agricultura Sinica, 2020, 53(5): 977-989.
[10] WU Lei,HE ZhiLong,TANG ShuiRong,WU Xian,ZHANG WenJu,HU RongGui. Greenhouse Gas Emission During the Initial Years After Rice Paddy Conversion to Vegetable Cultivation [J]. Scientia Agricultura Sinica, 2020, 53(24): 5050-5062.
[11] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[12] DONG Cheng,CHEN ZhiYong,XIE YingXin,ZHANG YangYang,GOU PeiXin,YANG JiaHeng,MA DongYun,WANG ChenYang,GUO TianCai. Effects of Successive Biochar Addition to Soil on Nitrogen Functional Microorganisms and Nitrous Oxide Emission [J]. Scientia Agricultura Sinica, 2020, 53(19): 4024-4034.
[13] ZHAO XinZhou,ZHANG ShiChun,LI Ying,ZHENG YiMin,ZHAO HongLiang,XIE LiYong. The Characteristics of Soil Ammonia Volatilization Under Different Fertilizer Application Measures in Corn Field of Liaohe Plain [J]. Scientia Agricultura Sinica, 2020, 53(18): 3741-3751.
[14] YUAN Wu,JIN ZhenJiang,CHENG YueYang,JIA YuanHang,LIANG JinTao,QIU JiangMei,PAN FuJing,LIU DeShen. Characteristics of Soil Enzyme Activities and CO2 and CH4 Emissions from Natural Wetland and Paddy Field in Karst Areas [J]. Scientia Agricultura Sinica, 2020, 53(14): 2897-2906.
[15] LIU Qiao,JI YanZhi,GUO YanJie,ZHANG LiJuan,ZHANG Jie,HAN Jian. Effects of Water and Nitrogen Regulation on Greenhouse Gas Emissions and Warming Potential in Vineyard Soil [J]. Scientia Agricultura Sinica, 2019, 52(8): 1413-1424.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!