Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (8): 1475-1488.doi: 10.3864/j.issn.0578-1752.2012.08.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

超级稻|产量|时期|硅|硅素吸收、利用效率Effect of Application of Silicon at Different Periods on Grain Yield and Silicon Absorption, Use Efficiency in Super Rice

 GONG  Jin-Long, HU  Ya-Jie, LONG  Hou-Yuan, CHANG  Yong, GE  Meng-Jie, GAO  Hui, LIU  Yan-Yang, ZHANG  Hong-Cheng, DAI  Qi-Gen, HUO  Zhong-Yang, XU  Ke, WEI  Hai-Yan, LI  De-Jian, SHA  An-Qin, ZHOU  You-Yan, LUO  Xue-Chao   

  1. 1.扬州大学农学院/农业部长江流域稻作技术创新中心/江苏省作物遗传生理重点实验室,江苏扬州225009
    2. 江苏省兴化市农业局,江苏兴化225700
  • Received:2011-09-13 Online:2012-04-15 Published:2012-01-09

Abstract: 【Objective】The objective of this study was to identify the best period for application of Si and the mechanisms of efficient Si absorption and use efficiency in super rice. 【Method】A field experiment was conducted with two japonica super rice varieties Wuyunjing24 and Huaidao9 planted on a large scale in Jiangsu region as materials exposed to applied Si at different periods. Grain yield and its components, Si accumulation at the main growth and development stage, periodic Si accumulation, periodic Si uptake rate, Si use efficiency, etc, were investigated. Furthermore, correlation analysis of grain yield and its components and traits associated with Si uptake and use efficiency was studied. 【Result】 Applied Si increased grain yield and its components, Si accumulation at the main growth and development stage, periodic Si accumulation, periodic Si uptake rate and partial factor productivity of applied Si, but it decreased Si use efficiency for grain production, significantly. It not only promoted Si supplies, but also improved the ability of providing Si of the soil. Morover, it raised available Si level in the soil and promoted Si absorption of rice. With the delaying periods of applied Si, grain yield, panicles, grains per panicle, total amount of Si absorption, Si uptake per 100kg of grain, Si recovery efficiency, Si agronomic efficiency and partial factor productivity of applied Si increased firstly and then decreased, while Si use efficiency for grain production showed an opposite trend, with applied Si at effective tillering reaching a peak for panicles and critical leaf-age for productive tillers for others. However, seed-setting rate and 1000-grain-weight followed an ascendent tendency accordingly, with 1000-grain-weight of applied Si at heading reaching a significant level, whereas Si physiological efficiency was not significantly correlated with the periods of applied Si. Si accumulation rate of rice were 20.69-29.02% from transplanting to panicle initiation, 47.46-59.65% from panicle initiation to heading, 17.99-25.52% from heading to maturity, panicle initiation-heading > transplanting-panicle initiation > heading-maturity, significantly, and the periodic Si uptake rate followed the same trend as it. Correlation analysis showed that, grain yield components of rice grew together with Si absorption in phase and there existed significant positive correlations between grain yield and total amount of Si absorption. The increase of periodic Si uptake rate and periodic Si accumulation from panicle initiation to heading improved by applied Si was the physiological basis of increasing grain yield improved by large panicle. 【Conclusion】Increase of periodic Si uptake rate and periodic Si accumulation, especially at panicle initiation-heading stage, could increase Si accumulation at heading and maturity satges and Si use efficiency. By achieving large panicle based on stabilizing and raising panicles, and promoting the enrichment of population sink, grain yield could be further improved by application of Si.

Key words: super rice, grain yield, period, silicon, silicon absorption and use efficiency

[1]高  丹, 陈基宁, 蔡昆争, 骆世明. 硅在植物体内的分布和吸收及其在病害逆境胁迫中的抗性作用. 生态学报, 2010, 30(10) :2745- 2755.

Gao D, Chen J N, Cai K Z, Luo S M. Distribution and absorption of silicon in plant and its role in plant disease resistance under environmental stress. Acta Ecologica Sinica, 2010, 30(10) :2745- 2755. (in Chinese)

[2]黄秋婵, 韦友欢, 韦良兴. 硅对水稻生长的影响及其增产机理研究进展. 安徽农业科学, 2008, 36(3) :919- 920.

Huang Q C, Wei Y H, Wei L X. Review of the effect of the silicon on growth and mechanism of rice yield-increasing. Journal of Anhui Agricultural Sciences, 2008, 36(3) :919- 920. (in Chinese)

[3]Song A L, Li P, Li Z J, Fan F L, Nikolic M, Liang Y C. The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil, 2011, 344 :319- 333.

[4]Sun W C, Zhang J, Fan Q H, Xue G F, Li Z J, Liang Y C. Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier. European Journal of Plant Pathology, 2010, 128(1) :39- 49.

[5]Gao D, Cai K Z, Chen J N, Luo S M, Zeng R S, Yang J Y, Zhu X Y. Silicon enhances photochemical efficiency and adjusts mineral nutrient absorption in Magnaporthe oryzae infected rice plants. Acta Physiology Plant, 2011, 33(3) :675- 682.

[6]Fleck A T, Nye T, Repenning C, Stahl F, Zahn M, Schenk M K. Silicon enhances suberization and lignification in roots of rice (Oryza sativa). Journal of Experimental Botany, 2011, 62(6) :2001- 2011.

[7]Nwugo C C, Huerta A J. The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. Journal of Proteome Research, 2011, 10(2) :518- 528.

[8]张国良, 戴其根, 王建武, 张洪程, 霍中洋, 凌  励, 王  显, 张  军. 施硅量对粳稻品种武育粳3号产量和品质的影响. 中国水稻科学, 2007, 21(3) :299- 303.

Zhang G L, Dai Q G, Wang J W, Zhang H C, Huo Z Y, Ling L, Wang X, Zhang J. Effects of silicon fertilizer rate on yield and quality of japonica rice Wuyunjing3. Chinese Journal of Rice Science, 2007, 21(3) :299- 303. (in Chinese)

[9]Li W B, Shi X H, Wang H, Zhang F S. Effects of silicon on rice leaves resistance to Ultraviolet-B. Acta Botanica Sinica, 2004, 46(6) :691- 697.

[10]薛高峰, 宋阿琳, 孙万春, 李兆君, 范分良, 梁永超. 硅对水稻叶片抗氧化酶活性的影响及其与白叶枯病抗性的关系. 植物营养与肥料学报, 2010, 16(3) :591- 597.

Xue G F, Song A L, Sun W C, Li Z J, Fan F L, Liang Y C. Influences of silicon on activities of antioxidant enzymes in rice leaves infected by Xoo strain in relation to bacterial blight resistance. Plant Nutrition and Fertilizer Science, 2010, 16(3) :591- 597. (in Chinese)

[11]Seebold K W, Datnoff L E, Correa-Victoria F J, Kucharek T A, Snyder G H. Effect of silicon rate and host resistance on blast, scald, and yield of upland rice. Plant Disease, 2000, 84(8) :871- 876.

[12]郭  彬, 娄运生, 梁永超, 张  杰, 华海霞, 奚云龙. 氮硅肥配施对水稻生长、产量及土壤肥力的影响. 生态学杂志, 2004, 23(6): 33-36.

Guo B, Lou Y S, Liang Y C, Zhang J, Hua H X, Xi Y L. Effects of nitrogen and silicon applications on the growth and yield of rice and soil fertility. Chinese Journal of Ecology, 2004, 23(6) :33- 36. (in Chinese)

[13]中国土壤学会农业化学专业委员会. 土壤农业化学常规分析方法. 北京: 科学出版社. 1983 :285- 286.

Agro-chemistry Specialty Committee of China Soil Academy. General Analysis Methods in Soil Agro-Chemistry. Beijing: Science Press, 1983:285-286. (in Chinese)

[14]鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000:234-236.

Bao S D. Soil and Agricultural Chemistry Analysis. Beijing: China Agricultural Press,2000:234-236. (in Chinese)

[15]杨泽峰, 徐辰武, 顾世梁. SPSS农业试验数据分析实用教程. 南京: 南京大学出版社, 2009.

Yang Z F, Xu C W, Gu S L. Practical Tutorials for SPSS in Data Statistics of Agricultural Experiment. Nanjing: Southeast University Press, 2009. (in Chinese)

[16]张国良, 丁  原, 王清清, 戴其根, 黄慧宇, 霍中洋, 张洪程. 硅对水稻几丁质酶和?-1, 3-葡聚糖酶活性的影响及其与抗纹枯病的关系. 植物营养与肥料学报, 2010, 16(3):598- 604.

Zhang G L, Ding Y, Wang Q Q, Dai Q G, Huang H Y, Huo Z Y, Zhang H C. Effects of silicon on chitinase and ?-1, 3-glucanase activities of rice infected by Rhizoctonia solani and its relation to resistance. Plant Nutrition and Fertilizer Science, 2010, 16(3) :598- 604. (in Chinese)

[17]薛高峰, 孙万春, 宋阿琳, 李兆君, 范分良, 梁永超. 硅对水稻生长、白叶枯病抗性及病程相关蛋白活性的影响. 中国农业科学, 2010, 43(4) :690- 697.

Xue G F, Sun W C, Song A L, Li Z J, Fan F L, Liang Y C. Influence of silicon on rice growth, resistance to bacterial blight and activity of pathogenesis-related proteins. Scientia Agricultura Sinica, 2010, 43(4): 690- 697. (in Chinese)

[18]史新慧, 王  贺, 张福锁. 硅提高水稻抗镉毒害机制的研究. 农业环境科学学报, 2006,25(5):1112- 1116.

Shi X H, Wang H, Zhang F S. Research on the mechanism of silica improving the resistance of rice seedlings to Cd. Journal of Agro-Environment Science, 2006, 25(5) :1112- 1116. (in Chinese)

[19]宋合林, 刘  兵, 崔占文, 田  强. 不同生育时期施用硅肥对水稻产量的影响. 现代化农业,2009 (9):18.

Song H L, Liu B, Cui Z W, Tian Q. Effect of applied silicon at different periods on grain yield in rice. Modernizing Agriculture, 2009(9) :18. (in Chinese)

[20]周  青, 潘国庆, 施作家, 陈风华. 不同时期施用硅肥对水稻群体质量及产量的影响. 耕作与栽培, 2001(3) :25-27.

Zhou Q, Pan G Q, Shi Z J, Chen F H. Effect of applied silicon at different periods on population quality and grain yield. Tillage and Cultivation, 2001(3) :25- 27. (in Chinese)

[21]韩兴华, 王广龙, 李德志, 丁书礼. 硅素在水稻上的增产机理、效果及应用. 现代农业科技, 2006 (8):94.

Han X H, Wang G L, Li D Z, Ding S L. The mechanism of increasing grain yield, effect and application of silicon to rice. Modernizing Agriculture, 2006 (8) :94. (in Chinese)

[22]苗得雨, 赵丽琴, 任学坤, 刘  成. 白浆型水稻土生物硅肥的应用效果. 黑龙江八一农垦大学学报, 2006, 18(4) :25- 27.

Miao D Y, Zhao L Q, Ren X K, Liu C. The effect of applying biology silicon fertilizer on albic rice soil of serosity rice. Journal of Heilongjiang August First Land Reclamation University, 2006, 18(4) :25- 27. (in Chinese)

[23]胡定金, 王富华. 水稻硅素营养. 湖北农业科学, 1995 (5) :33-36.

Hu D J, Wang F H. Silicon nutrition of rice. Hubei Agricultural Sciences, 1995 (5) :33- 36. (in Chinese)

[24]甘秀芹, 江立庚, 徐建云, 董登峰, 韦善清. 水稻的硅素积累与分配特性及其基因型差异. 植物营养与肥料学报, 2004, 10(5) :531- 535.

Gan X Q, Jiang L G, Xu J Y, Dong D F, Wei S Q. Characteristics and genotypic difference of silicon accumulation and distribution in rice. Plant Nutrition and Fertilizer Science, 2004, 10(5) :531- 535. (in Chinese)

[25]朱小平, 王义炳, 李家全. 水稻硅素营养特性的研究. 土壤通报, 1995, 26(5) :232- 233.

Zhu X P, Wang Y B, Li J Q. Study on silicon nutritional characteristics in rice. Chinese Journal of Soil Science, 1995, 26(5) :232- 233. (in Chinese)

[26]张翠珍, 邵长泉, 孟  凯, 李焕玲, 韩学斌, 张俊生. 水稻吸硅特点及硅肥效应研究. 莱阳农学院学报, 2003, 20(2) :111- 113.

Zhang C Z, Shao C Q, Meng K, Li H L, Han X B, Zhang J S. Study on rice absorbing silicon characteristics and silica fertilizer effect under salinized moist in coatal regions. Journal of Laiyang Agricultural College, 2003, 20(2) :111- 113. (in Chinese)

[27]魏海燕, 张洪程, 杭  杰, 戴其根, 霍中洋, 许  轲, 张胜飞, 马  群, 张  庆, 吴文革. 粳稻硅素积累与分配对氮素的反应及其基因型差异. 植物营养与肥料学报, 2008, 14(2) :213- 220.

Wei H Y, Zhang H C, Hang J, Dai Q G, Huo Z Y, Xu K, Zhang S     F, Ma Q, Zhang Q, Wu W G. Silicon accumulation and distribution  in rice as affected by nitrogen levels and genotype differences.   Plant Nutrition and Fertilizer Science, 2008, 14(2): 213-220. (in Chinese)

[28]马同生, 张永春, 陈兴华, 梁永超, 黄胜海, 王岐山, 张炳奎, 鲁  嘉. 水稻与小麦吸硅规律与硅肥应用. 植物营养与肥料学报, 1994 (1) :104- 108.

Ma T S, Zhang Y C, Chen X H, Liang Y C, Huang S H, Wang Q S, Zhang B K, Lu J. Regularity of silicon uptake at the growth stage of rice and wheat crops and silicon fertilizer application. Plant Nutrition and Fertilizer Science, 1994 (1) :104-108. (in Chinese)

[29]毛振强, 杨建堂, 魏义长, 高尔明, 王文亮, 霍晓婷. 沿黄稻区水稻硅素营养特点的研究. 河南农业科学, 1999(6) :22- 24.

Mao Z Q, Yang J T, Wei Y C, Gao E M, Wang W L, Huo X T. Study on silicon nutritional characteristics of rice in paddy rice area along the Yellow River. Journal of Henan Agricultural Sciences, 1999(6): 22- 24. (in Chinese)

[30]王  显, 张国良, 霍中洋, 肖跃成, 熊  飞, 张洪程, 戴其根. 氮硅配施对水稻叶片光合作用和氮代谢酶活性的影响. 扬州大学学报:农业与生命科学版, 2010, 31(3) :44- 49.

Wang X, Zhang G L, Huo Z Y, Xiao Y C, Xiong F, Zhang H C, Dai Q G. Effects of application of nitrogen combined with silicon on the photosynthesis and activities of nitrogen metabolic enzyme of rice leaf. Journal of Yangzhou University: Agricultural and Life Science Edition, 2010, 31(3) :44- 49. (in Chinese)

[31]Tamai K, Ma J F. Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant. Plant Soil, 2008, 307 :21- 27.

[32]张国良. 施硅增强水稻对纹枯病抗性的机制研究[D]. 扬州: 扬州大学, 2009.

Zhang G L. The mechanism of the resistance to rice sheath blight improved by silicon application[D]. Yangzhou: Yangzhou University, 2009. (in Chinese)

[33]魏海燕, 张洪程, 戴其根, 霍中洋, 许  轲. 水稻硅素营养研究进展. 江苏农业科学, 2010(1) :121- 124.

Wei H Y, Zhang H C, Dai Q G, Huo Z Y, Xu K. Progress on research in silicon nutrition of rice. Jiangsu Agricultural Sciences, 2010 (1) :121- 124. (in Chinese)

[34]陈健晓. 硅氮互作对超级早稻部分生理效应的研究[D]. 长沙: 湖南农业大学, 2010.

Chen J X. Interaction of silicon and nitrogen on some physiological effects of super early rice[D]. Changsha: Hunan Agricultural University, 2010. (in Chinese)

[35]武艳菊, 宋祥伟, 刘振学. 硅肥的研究现状及展望. 磷肥与复肥, 2006, 21(3):55-56, 74.

Wu Y J, Song X W, Liu Z X. The present research situation and prospect of silicon fertilizer. Phosphate & Compound Fertilizer, 2006, 21(3) :55-56, 74. (in Chinese)

[36]陈绍荣, 孙玲丽, 史先良, 王美华, 姚振岭, 范永芳. 硅肥在水稻超高产栽培中的作用及其施用技术. 磷肥与复肥, 2010, 25(4): 75-76.

Chen S R, Sun L L, Shi X L, Wang M H, Yao Z L, Fan Y F. The function of silicon fertilizer in the cultivation of super-high-yielding rice and its application technique. Phosphate & Compound Fertilizer, 2010, 25(4):75- 76. (in Chinese)
[1] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[2] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[3] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[4] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[5] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[6] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[7] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[8] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[9] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[10] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[11] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[12] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[13] CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu. Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases [J]. Scientia Agricultura Sinica, 2021, 54(7): 1499-1511.
[14] ZONG YuZheng,ZHANG HanQing,LI Ping,ZHANG DongSheng,LIN Wen,XUE JianFu,GAO ZhiQiang,HAO XingYu. Effects of Elevated Atmospheric CO2 Concentration and Temperature on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism in Flag Leaves and Yield of Winter Wheat in North China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4984-4995.
[15] LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations [J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!