Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (2): 255-265.doi: 10.3864/j.issn.0578-1752.2012.02.007

• PLANT PROTECTION • Previous Articles     Next Articles

Resistance of Different Tea Cultivars to Empoasca vitis Göthe

 JIN  Shan, SUN  Xiao-Ling, CHEN  Zong-Mao, XIAO  Bin   

  1. 1.西北农林科技大学园艺学院,陕西杨凌 712100
    2.中国农业科学院茶叶研究所,杭州 310008
  • Received:2011-04-19 Online:2012-01-15 Published:2011-06-20

Abstract: 【Objective】 The objective of this study is to analyze resistant levels of 9 tea cultivars to small green leafhopper (SGL) Empoasca vitis and to establish foundation for mechanism research in the resistance of various tea cultivars. 【Method】 The population dynamics in tea garden, life cycle, number of laid nymphae per female and nymph survival rate of SGL on different tea cultivars were investigated. Moreover, the feeding behavior of SGL on tea cultivars were obtained by using electrical penetration graph (EPG) technique. 【Result】 (1) The population density on Enbiao (EB), Zhushanyihao (ZS), Banzhuyuan (BZY) and Lantian (LT) cultivars were more than Deqing (DQ), Jiande (JD), Changxingzisun (CX) and Juyan (JY). (2) The life cycle duration on DQ, JY, CX, JD and Longjing 43 (LJ) were significantly longer than that on EB, BZY and ZS. (3) The number of laid nymphae per female on EB and BZY were significantly more than that on JY, CX, JD and LJ. (4) The difference existed in nymph survival rate on various cultivars. The survival rate of nymphae on EB and ZS were the highest, amounted 55.00% and 50.00% respectively, while the lowest was on JY, amount 32.00%. (5) The total feeding duration on ZS and EB were significantly longer than that on DQ, JY, CX, JD and LJ. (6) The resistant levels of the 9 tea cultivars to SGL were classified into two groups based on the result of cluster analysis according to the life cycle duration, number of laid nymphae per female, nymph survival rate and the feeding duration. The first group, including JY, DQ, LJ, JD and CX, was resistant to the SGL, and the second group was susceptible to the SGL, consisting of LT, BZY, ZS and EB. Generally, the order of resistance level with 9 cultivars from strong to weak were JY > DQ, LJ, JD and CX > LT, BZY and ZS > EB. 【Conclusion】 The natural choice, adaptability and feeding preference of SGL on various cultivars are reflected well based on the dynamics of population density, life cycle, number of laid nymphae per female, nymph survival rate and feeding duration, which are significantly different in the classification of various cultivars in resistant levels to the SGL.

Key words: tea cultivars, Empoasca vitis Göthe, resistance, development and fecundity, probing behavior

[1]Gerhardson B. Biological substitutes for pesticides. Trends in Biotechnology, 2002, 20(8): 338-343.

[2]Kovach J, Petzoldt C, Degni J, Tette J. A method to measure the environmental impact of pesticides. New York’s Food and Life Sciences Bulletin, 1992(139): 1-8.

[3]王彦华, 吴长兴, 赵学平, 苍  涛, 陈丽萍, 俞瑞鲜, 吴声敢, 王  强. 灰飞虱对杀虫剂抗药性的研究进展. 植物保护, 2010, 36(4): 29-35.

Wang Y H, Wu C X, Zhao X P, Cang T, Chen L P, Yu R X, Wu S G, Wang Q. Advances in the research of insecticide resistance of the small brown planthopper, Laodelphax striatellus. Plant Protection, 2010, 36(4): 29-35. (in Chinese)

[4]何月平, 沈晋良. 害虫抗药性进化的遗传起源与分子机制. 昆虫知识, 2008, 45(2): 175-181.

He Y P, Shen J L. The genetic origin and molecular basic of the evolution of insect resistance to insecticides. Chinese Bulletin of Entomology, 2008, 45(2): 175-181. (in Chinese)

[5]Jutsum A R, Heaney S P, Perrin B M, Wege PJ. Pesticide resistance: assessment of risk and the development and implementation of effective management strategies. Pesticide Science, 1998, 54(4): 435-446.

[6]余月书, 沈国清, 陆贻通, 程国华. 农药对害虫天敌的Hormesis效应研究进展. 植物保护, 2009, 35(5): 10-13.

Yu Y S, Shen G Q, Lu Y T, Cheng G H. Advances in the hormesis of pesticides to the natural enemies. Plant Protection, 2009, 35(5): 10-13. (in Chinese)

[7]孙红炜, 尚佑芬, 赵玖华, 路兴波, 王升吉, 杨崇良. 不同药剂对麦蚜防治作用及对麦田天敌昆虫的影响. 麦类作物学报, 2007, 27(3): 543-547.

Sun H W, Shang Y F, Zhao J H, Lu X B, Wang S J, Yang C L. Effects of different pesticides on wheat aphids and natural enemies. Journal of Triticeae Crops, 2007, 27(3): 543-547. (in Chinese)

[8]Theiling K M, Croft B A. Pesticide side-effects on arthropod natural enemies: A database summary. Agriculture, Ecosystem and Environment, 1988, 21(3/4): 191-218.

[9]Landis D A, Wratten S D, Gurr G M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 2000, 45: 175-201.

[10]Kogan M. Integrated pest management: historical perspectives and contemporary developments. Annual Review of Entomology, l998, 43: 243-270.

[11]刘树生. 害虫综合治理面临的机遇、挑战和对策. 植物保护, 2000, 26(4): 35-38.

Liu S S. The opportunity, challenge and strategy of IPM (integrate pest management). Plant Protection, 2000, 26(4): 35-38. (in Chinese)

[12]Jackai L E N, Singh S R. Varietal resistance in the integrated pest management of cowpea pests. Insect Science and Its Application, 1983, 4(1/2): 199-204.

[13]Sharma H C. Host-plant resistance to insects in sorghum and its role in integrated pest management. Crop Protection, 1993, 12(1): 11-34.

[14]Vincent P J, Puanani A W, Peter A F. Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). Journal of Insect Physiology, 2000, 46(4): 573-583.

[15]李付广, 崔金杰, 刘传亮, 武芳芝, 李凤莲, 周  勇, 李秀兰. 双价基因抗虫棉及其抗虫性研究. 中国农业科学, 2000, 33(1): 46-52.

Li F G, Cui J J, Liu C L, Wu F Z, Li F L, Zhou Y, Li X L. The study of insect-resistant transgenic cotton habouring double-gene and its insect-resistance. Scientia Agricultura Sinica, 2000, 33(1): 46-52. (in Chinese)

[16] Metcalf R L, Luckmann W H. Introduction to Insect Pest Management. 3rd ed. New York: John Wiley & Sons, Inc., 1994: 78-99.

[17]曹  兵, 徐万仁, 吕  文. 几种抗虫树种的化学成分分析及其抗虫机理的研究. 林业科技, 1998, 23(6): 27-29.

Cao B, Xu W R, Lü W. Chemical compositions analysis and resistant mechanism of several varieties. Forestry Science and Technology, 1998, 23(6): 27-29. (in Chinese)

[18]黄  志, 董尚胜. 茶树抗虫性研究进展. 蚕桑茶叶通讯, 2001(1): 2-17.

Huang Z, Dong S S. The research progress on pest resistance of tea tree. Newsletter of Sericulture and Tea, 2001(1): 2-17. (in Chinese)

[19]杨丽丽, 郑高云, 梁丽云, 杨云秋, 高旭晖. 茶树抗病虫机制的研究进展. 福建茶叶, 2008(2): 8-10.

Yang L L, Zheng G Y, Liang L Y, Yang Y Q, Gao X H. The research progress on pest and disease resistance of tea plant. Tea in Fujian, 2008(2): 8-10. (in Chinese)

[20]杨  青, 余德亿. 茶园假眼小绿叶蝉种群的生态调控. 福建茶叶, 2008(2): 32-35.

Yang Q, Yu D Y. Ecological control of tea green leafhopper population dynamics. Tea in Fujian, 2008(2): 32-35. (in Chinese)

[21]张衍炽, 陈佳保. 安溪县不同海拔茶假眼小绿叶蝉的发生与综防措施. 茶叶科学技术, 2006(2): 43.

Zhang Y C, Chen J B. Tea green leafhopper appearance and control at different altitude planting in Anxi. Tea Science and Technology, 2006(2): 43. (in Chinese)

[22]徐金汉, 王念武, 张灵玲, 关  雄. 假眼小绿叶蝉防治指标的研究. 茶叶科学, 2005, 25(2): 131-135.

Xu J H, Wang N W, Zhang L L, Guan X. Study on the economic threshold of tea leafhopper (Empoasca vitis Gothe). Journal of Tea Science, 2005, 25(2): 131-135. (in Chinese)

[23]张觉晚, 王沅江, 黄亚辉. 茶树抗虫品种资源调查及抗性机制研究. 茶叶通讯, 1994(1): 2-6.

Zhang J W, Wang Y J, Huang Y H. Study on tea varieties resistance and mechanism. Tea Communication, 1994(1): 2-6. (in Chinese)

[24]毛迎新, 邹  武, 马新华, 林乃铨. 福建主要茶树品种间假眼小绿叶蝉种群动态及其抗虫性比较. 华中农业大学学报, 2009, 28(1): 16-19.

Mao Y X, Zou W, Ma X H, Lin N Q. Comparison of the population dynamics of Empoasca vitis (Gothe) on six tea varieties and their resistance to pests. Journal of Huazhong Agricultural University, 2009, 28(1): 16-19. (in Chinese)

[25]苗  进, 韩宝瑜. 假眼小绿叶蝉 (Empoasca vitis Gothe) 在不同品种茶树上的取食行为. 生态学报, 2007, 27(10): 3973-3982.

Miao J, Han B Y. The probing behavior of the green leafhopper on different tea plant cultivars. Acta Ecologica Sinica, 2007, 27(10): 3973-3982. (in Chinese)

[26]刘丽芳, 徐德良, 穆  丹, 韩宝瑜. EPG技术分析不同品种茶树抗假眼小绿叶蝉取食行为的差异. 安徽农业大学学报, 2011, 38(2): 146-150.

Liu L F, Xu D L, Mu D, Han B Y. Analysis of the feeding behavior of tea green leafhopper on resistant and sensible cultivars of tea plants by electrical penetration graphy techniques. Journal of Anhui Agricultural University, 2011, 38(2): 146-150. (in Chinese)

[27]Tjallingii W F. Membrance potentials as an indication for plant cell penetration by aphids stylets. Entomologia Experimentalis et Applicata, 1985, 38: 187-193.

[28]Tjallingii W F. Electrical recording of penetration behavior by aphids. Entomologia Experimentalis et Applicata, 1978, 24: 521-530.

[29]扈克明, 张艳梅, 王佳芳, 谢太华. 不同茶树品种间小绿叶蝉类群数量动态与抗虫性比较. 茶叶科学, 2003, 23(1): 57-60.

Hu K M, Zhang Y M, Wang J F, Xie T H. Comparison on the population dynamics and leafhopper resistance on different tea cultivars. Journal of Tea Science, 2003, 23(1): 57-60. (in Chinese)

[30]于江南, 陈  丹, 赛里克古力•胡尔漫哈里, 李  杰, 孙新华. 新疆不同棉花品种烟粉虱实验种群. 应用生态学报, 2009, 20(6): 1471-1476.

Yu J N, Chen D, Sailikgli H, Li J, Sun X H. Biological characters of Bemisia tabaci (Gennadius) experimental population on cotton varieties in Xinjiang. Chinese Journal of Applied Ecology, 2009, 20(6): 1471-1476. (in Chinese)

[31]刘  芳, 宋  英, 包善微, 卢海燕, 祝树德, 梁国华. 水稻品种对灰飞虱的抗性及其机制. 植物保护学报, 2007, 34(5): 449-454.

Liu F, Song Y, Bao S W, Lu H Y, Zhu S D, Liang G H. Resistance to small brown planthopper and its mechanism in rice varieties. Acta Phytophylacica Sinica, 2007, 34(5): 449-454. (in Chinese)

[32]杨永义, 王竹红, 黄  建, 彭建立, 江飞燕, 刘静瑜. 4种寄主植物对烟粉虱发育、存活及繁殖的影响. 华东昆虫学报, 2006, 15(4): 276-280.

Yang Y Y, Wang Z H, Huang J, Peng J L, Jiang F Y, Liu J Y. The effects of four kinds of host plants on the development, survivorship and reproduction of Bemisia tabaci. Entomological Journal of East China, 2006, 15(4): 276-280. (in Chinese)

[33]张华普, 相建业, 吴云锋, 胡  亮, 董旭燕. 3种寄主植物对条沙叶蝉生长发育和繁殖的影响. 西北农林科技大学学报: 自然科学版, 2008, 36(10): 163-167.

Zhang H P, Xiang J Y, Wu Y F, Hu L, Dong X Y. Effects of three host plants on the development and fecundity of Psammotettix striatus L.. Journal of Northwest Agriculture and Forestry University: Natural Sciences Edition, 2008, 36(10): 163-167. (in Chinese)

[34]李小珍, 刘映红, 田  艳. 六种寄主植物对二点叶蝉生长发育和繁殖的影响. 应用生态学报, 2004, 15(8): 1431-1434.

Li X Z, Liu Y H, Tian Y. Effects of six host plants on the development and fecundity of Cicadulina bipunctella. Chinese Journal of Applied Ecology, 2004, 15(8): 1431-1434. (in Chinese)

[35]Alvarez A E, Tjallingii W F, Garzo E, Vleeshouwers V, Dicke M, Vosman B. Location of resistance factors in the leaves of potato and wild tuber-bearing Solanum species to the aphid Myzus persicae. Entomologia Experimentalis et Applicata, 2006, 121: 145-157.

[36]Marchetti E, Civolani S, Leis M, Chicca M, Tjallingii W F, Pasqualini E, Baronio P. Tissue location of resistance in apple to the rosy apple aphid established by electrical penetration graphs. Bulletin of Insectology, 2009, 62(2): 203-208.

[37]严  盈, 刘万学, 万方浩. 唾液成分在刺吸式昆虫与植物关系中的作用. 昆虫学报, 2008, 51(5): 537-544.

Yang Y, Liu W X, Wang F H. Roles of salivary components in piercing-sucking insect-plant interactions. Acta Entomologica Sinica, 2008, 51(5): 537-544. (in Chinese)

[38]张  翼, 于  飞, 曾鑫年. 取食量对斜纹夜蛾生长发育的影响. 湖南农业大学学报: 自然科学版, 2004, 30(6): 565-568.

Zhang Y, Yu F, Zeng X N. Effects of feeding amount on the growth and development of tobacco cutworm larvae. Journal of Hunan Agricultural University: Natural Sciences, 2004, 30(6): 565-568. (in Chinese)

[39]李云寿, 胡  萃. 限制取食时间对茶尺蠖生长发育的影响. 浙江农业大学学报, 1997, 23(5): 533-535.

Li Y S, Hu C. Effect of feeding restriction on growth and development of the tea geometrid larvae. Journal of Zhejiang Agriculture University, 1997, 23(5): 533-535. (in Chinese)

[40]郑高云. 不同茶树品种对茶尺蠖抗性机制的研究[D]. 合肥: 安徽农业大学, 2008.

Zheng G Y. Study on resistant mechanism of different tea varieties to Ectropis oblique Prout[D]. Hefei: Anhui Agricultural University, 2008. (in Chinese)

[41]吕仲贤, 杨樟法, 胡  萃. 寄主植物对亚洲玉米螟取食、生长发育和生殖的影响. 植物保护学报, 1996, 23(2): 126-130.

Lü Z X, Yang Z F, Hu C. The effect of host plants on the feeding, development and reproduction of Asian corn borer. Acta Phytophylacica Sinica, 1996, 23(2): 126-130. (in Chinese)

[42]雷  宏, 徐汝梅. EPG —— 一种研究植食性刺吸式昆虫刺探行为的有效方法. 昆虫知识, 1996, 33(2): 116-120.

Lei H, Xu R M. EPG-an effective technique for study on probing activities of piercing-sucking insects. Entomological Knowledge, 1996, 33(2): 116-120. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[5] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[6] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[7] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[8] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[9] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[10] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[11] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[12] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[13] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[14] FENG AiQing,WANG CongYing,ZHANG MeiYing,CHEN Bing,FENG JinQi,CHEN KaiLing,WANG WenJuan,YANG JianYuan,SU Jing,ZENG LieXian,CHEN Shen,ZHU XiaoYuan. Pathotype Analysis of Xanthomonas oryzae pv. oryzae in Main Rice Producing Regions of China and Establishment of Differential Hosts of Near-Isogenic Lines [J]. Scientia Agricultura Sinica, 2022, 55(21): 4175-4195.
[15] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!