Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (22): 4694-4699.doi: 10.3864/j.issn.0578-1752.2011.22.017

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Detection of Quantitative Trait Loci for Live Weight at Weaning in an Erhualian×Shaziling Population Using Whole-Genome High-Density SNP Markers

 HE  Yu-Yong, LI  Wan-Bo, ZHANG  Zhi-Yan, YANG  Ming, 欧Yang-Jing , YANG  Jie, REN  Jun, XIAO  Shi-Jun   

  1. 1.江西农业大学动物生物技术国家重点实验室培育基地,南昌 330045
  • Received:2010-01-30 Online:2011-11-15 Published:2011-04-15

Abstract: 【Objective】An Erhualian×Shaziling F2 resource population was constructed to map quantitative trait loci (QTL) for liveweight of piglets at the weaning age of 45 days and identify positional candidate genes related to weaned liveweight, providing a start pointing to detect the causal genes in the future.【Method】The F2 resource population was constructed and genomic DNA of all weaned piglets was genotyped with Illumina porcine 60 k DNA chip. Whole-genome linkage analysis was conducted to detect QTL for liveweight of piglets weaned at day 45. Positional candidate genes were characterized from Ensemble (EMBL-EBI) and NCBI (National Center for Biotechnology Information) database.【Result】A total of 3 QTLs were detected for the measured phenotype including one 5% genome-wide QTL on sus scrofa chromosome 2 (SSC2) and one 1% genome-wide QTL on sus scrofa chromosome 5 (SSC5) and sus scrofa chromosome 14 (SSC14), respectively. Five candidate genes were identified, including CYP2R1, COPB1 and PDE3B on SSC2 and NOP2, GDF3 on SSC5. 【Conclusion】 The QTL for liveweight of piglets weaned at day 45 were mapped on SSC2, SSC5 and SSC14, and 5 positional candidate genes were identified.

Key words: swine, liveweight at weaning, QTL mapping, candidate gene, whole-genome linkage analysis

[1]Wolter B F, Ellis M. The effects of weaning weight and rate of growth immediately after weaning on subsequent pig growth performance and carcass characteristics. Canadian Journal of Animal Science, 2001, 81: 363-369.

[2]Bidanel J P, Milan D, Iannuccelli N, Amigues Y, Boscher M Y, Bourgeois, Caritez J C, Gruand J, LeRoy P, Lagant H, Quintanilla, Renard C, Gellin J, Ollivier L, Chevalet C. Detection of quantitative trait loci for growth and fatness in pigs. Genetics Selection Evolution, 2001, 33: 289-309.

[3]Thomsen H, Lee H K, Rothschild M F, Malek M, Dekkers J C M. Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine. Journal of Animal Science, 2004, 82(8): 2213-2228.

[4]Beeckmann P, Jr Schröffel J, Moser G, Bartenschlager H, Reiner G, Geldermann H. Linkage and QTL mapping for Sus scrofa Chromosome 3. Journal of Animal Breeding and Genetics, 2003, 120(1): 20-27.

[5]Cepica S, Stratil A, Kopecny M, Blazkova P, Jr Schröffel J, Davoli R, Fontanesi L, Reiner G, Bartenschlager H, Moser G, Geldermann H. Linkage and QTL mapping for Sus scrofa chromosome 4. Journal of Animal Breed Genetics, 2003, 120(1): 28-37.

[6]Ramos A M, Pita R H, Malek M, Lopes P S, Guimaraes S E F, Rothschild M F. Analysis of the mouse high-growth region in pigs. Journal of Animal Breeding and Genetics, 2009, 126(5): 404-412.

[7]Li X P, Do K T, Kim J J, Huang J, Zhao S H, Lee Y, Rothschild M F, Lee C K, Kim K S. Molecular characteristics of the porcine DLK1 and MEG3 genes. Animal Genetics, 2008, 39(2): 189-192.

[8]QTL for bodyweight (16 days and 21 days) in the pig genome. http://www.animalgenome.org/cgi-bin/QTLdb/SS/qtraitology?class_ID=4

[9]Liu G S, Kim J J, Jonas E, Wimmers K, Ponsuksili S, Murani E, Phatsara C, Tholen E, Juengst H, Tesfaye D, Chen J L, Schellander K. Combined line-cross and half-sib QTL analysis in Duroc–Pietrain population. Mammalian Genome, 2008, 19: 429-438.

[10]Sanchez M P, Riquet J, Iannuccelli N, Gogué J, Billon Y, Demeure O, Caritez J C, Burgaud G, Fève K, Bonnet M, Péry C, Lagant H, Le Roy P, Bidanel J P, Milan D. Effects of quantitative trait loci on chromosomes 1, 2, 4, and 7 on growth, carcass, and meat quality traits in backcross Meishan×Large White pigs. Journal of Animal Science, 2006, 84: 526-537.

[11]Wang L, Yu T P, Tuggle C K, Liu H C, Rothschild M F. A directed search for quantitative trait loci on chromosomes 4 and 7 in pigs. Journal of Animal Science, 1998, 76: 2560-2567.

[12]Liu G, Jennen D G J, Tholen E, Juengst H, Kleinwachter T, Holker M, Tesfaye D, Un G, Schreinemachers H J, Murani E, Ponsuksili S, Kim J J, Schellander K, Wimmers K. A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Animal Genetics, 2007, 38: 241-252.

[13]Guo Y M, Lee G J, Archibald A L, Haley C S. Quantitative trait loci for production traits in pigs: a combined analysis of two Meishan×Large White populations. Animal Genetics, 2008, 5: 486-495.

[14]Alfonso L, Haley C S. Power of different F2 schemes for QTL detection in livestock. Animal Science, 1998, 66: 1-8.

[15]Rothschild M F, Messer L, Day A, Wales R, Short T, Southwood O, Plastow G. Investigation of the retinol-binding protein 4(RBP4) gene as a candidate gene for increased litter size in pigs. Mammalian Genome, 2000, 11(1): 75-77.

[16]邵玉娟. 猪繁殖性状相关候选基因MAN2B2,MSR和RGS12的遗传效应分析[D]. 武汉: 华中农业大学, 2005.

Shao Y J. The genetic effect analysis of porcine MAN2B2, MSR, RGS12 gene affecting reproduction traits[D]. Wuhan: Huazhong Agricultural University, 2005. (in Chinese)

[17]李永辉. NCOA1基因与猪产仔性状的相关及序列分析[D]. 长沙: 湖南农业大学, 2005 .

Li Y H. The correlation of NCOA1 gene with litter size in swine and sequence analysis[D]. Changsha: Hunan Agricultural University, 2005. (in Chinese)

[18]武艳萍. 猪转化生长因子β1基因多态性与猪产仔数关系的研究[D]. 北京: 中国农业大学, 2005.

Wu Y P. Association of transforming growth factor-β1 gene polymorphisms with litter size in pigs[D]. Beijing: China Agricultural University, 2005. (in Chinese)

[19]张淑君, 熊远著, 邓昌彦, 郑  嵘, 蒋思文, 肖森木, 夏  瑜, 徐建祥, 刘晓华, 王春芳, 阮  征, 宫时玉. 卵泡刺激素受体基因作为产仔数候选基因的研究. 华中农业大学学报, 2002(6): 506-508.

Zhang S J, Xiong Y Z, Deng C Y, Zheng R, Jiang S W, Xiao S M, Xia Y, Xu J X, Liu X H, Wang C F, Ruan Z, Gong S Y. Study on follicle stimulating hormone receptor as candidate gene for litter size in pigs. Journal of Hua Zhong Agricultural University, 2002(6): 506-508. (in Chinese)

[20]Ding N S, Ren D R, Guo Y M, Ren J, Yan Y, Ma J W, Chen K F, Huang L S. Genetic variation of porcine prostaglandin-endoperoxide synthase 2(PTGS2) gene and its association with reproductive traits in an Erhua lian×Duroc F2 population. Acta Genetica Sinica, 2006, 33(3): 213-219.

[21]Santana B A A, Biase F H, Antunes R C, Borges M, Franco M M, Goulart L R. Association of the estrogen receptor gene PvuII restriction polymorphism with expected progeny differences for reproductive and performance traits in swine herds in Brazil. Genetics and Molecular Biology, 2006, 2: 273-277.

[22]Linville R C, Pomp D, Johnson R K, Rothschild M F. Candidate gene analysis for loci affecting litter size and ovulation rate in swine. Journal of Animal Science, 2001, 79(1): 60-67. 

[23]Cheng J B, Levine M A, Bell N H, Mangelsdorf D J, Russell D W. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proceedings of the National Academy of Sciences, 2004, 101(20): 7711-7715.

[24]Qiu H F, Xu X W, Fan B, Rothschild M F, MartinY, Liu B. Investigationof LDHA and COPB1 as candidate genes for muscle development in the MYOD1 region of pig chromosome 2. Molecular Biology Reports, 2010, 37(1): 629-636.

[25]Ahmad F, Lindh R, Tang Y, Weston M, Degerman E, Manganiello V C. Insulin-induced formation of macromolecular complexes involved in activation of cyclic nucleotide phosphodiesterase 3B(PDE3B) and its interaction with PKB. Biochemical Journal, 2007, 404(2): 257-268.

[26]Choi Y H, Park S, Hockman S, Zmuda-Trzebiatowska E, Svennelid F, Haluzik M, Gavrilova O, Ahmad F, Pepin L, Napolitano M, Taira M, Sundler F, Holst L S, Degerman E, Manganiello V C. Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice. Journal of Clinical Investigation, 2006,116: 3240-3251.

[27]Hong B, Wu K, Brockenbrough J S, Wu P, Aris J P. Temperature sensitive nop2 alleles defective in synthesis of 25S rRNA and large ribosomal subunits in Saccharomyces cerevisiae. Nucleic Acids Research, 2001, 29(14): 2927-2937.

[28]Andersson O, Korach-Andre M, Reissmann E, Ibáñez C F, Bertolino P. Growth/differentiation factor 3 signals through ALK7 and regulates accumulation of adipose tissue and diet-induced obesity. Proceedings of the National Academy of Sciences, 2008, 105(20): 7252-7256.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[3] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[4] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[5] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[6] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[7] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[8] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[9] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[10] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[11] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[12] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
[13] WEI Tian,WANG ChengYu,WANG FengJie,LI ZhongPeng,ZHANG FangYu,ZHANG ShouFeng,HU RongLiang,LÜ LiLiang,WANG YongZhi. Preparation of Monoclonal Antibodies Against the p30 Protein of African Swine Fever Virus and Its Mapping of Linear Epitopes [J]. Scientia Agricultura Sinica, 2022, 55(15): 3062-3070.
[14] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[15] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!