Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (21): 4350-4357.doi: 10.3864/j.issn.0578-1752.2011.21.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transformation of Wheat with High Molecular Weight Glutenin Subunit Gene 1Bx14

 LIU  Xiang-Li, JIN  Wei-Bo, LIU  Jin, ZHAO  Hui-Xian, GUO  Ai-Guang   

  1. 1.西北农林科技大学生命科学学院,陕西杨陵712100
    2.陕西省农业分子生物学重点实验室,陕西杨陵712100
  • Received:2011-04-28 Online:2011-11-01 Published:2011-09-21

Abstract: 【Objective】 The objective of this study is to use genetic transformation of high quality HMW-GS gene 1Bx14 to improve wheat bread-making quality. 【Method】 This investigation, based on the clone of HMW-GS gene 1Bx14 and construction of plant expression vectors, transformed the immature embryo of Mianyang19 by microprojectile bombardment. After selection with hygromycin and tested by PCR, the positive progenies were confirmed by PCR-Southern and Southern blotting. The compositions of high molecular weight glutenin subunit were analyzed by SDS-PAGE.【Result】Six transformed plantlet was obtained from 652 transformed callus, yielding a transformation frequency of 0.92%. The HMW-GS gene 1Bx14 was expressed in some seeds of transgenic plants with the expression of other subunits suppressed in varying degrees. 【Conclusion】The high molecular weight glutenin subunit gene 1Bx14 was transformed into wheat Mianyang 19 and was expressed in some transgenic progenies.

Key words: wheat, high molecular weight glutenin subunit, 1Bx14, transformation

[1]Sahrawat A K, Becker D, Lütticke S, Lörz H. Genetic improvement of wheat via alien gene transfer, an assessment. Plant Science, 2003, 165: 1147-1168.

[2]Vasil I K. Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.). Plant Cell Report, 2007, 26: 1133-1154.

[3]喻修道, 徐兆师, 陈  明, 李连城, 马有志. 小麦转基因技术研究及其应用. 中国农业科学, 2010, 43(8): 1539-1553.

Yu X D, Xu Z S, Chen M, Li L C, Ma Y Z. The progress and application of wheat transformation technology. Scientia Agricultura Sinica, 2010, 43(8): 1539-1553. (in Chinese)

[4]Vasil I K, Anderson O D. Genetic engineering of wheat gluten. Trends in Plant Science, 1997, 2(8): 292-297.

[5]Edwards N M, Gianibelli M C, McCaig T N, Clarke J M, Ames N P, Larroque O R, Dexter J E. Relationships between dough strength, polymeric protein quantity and composition for diverse durum wheat genotypes. Journal of Cereal Science, 2007, 45: 140-149.

[6]Rooke L, Barro F, Tatham A S, Fido R, Steele S, Békés F, Gras P, Martin A, Lazzeri P A, Shewry P R, Barcelo P. Altered functional properties of tritordeum by transformation with HMW glutenin subunit genes. Theoretical and Applied Genetics, 1999, 99: 851-858.

[7]He G Y, Jones H D, D’Ovidio R, Masci S, Chen M, West J, Butow B, Anderson O D, Lazzeri P, Fido R, Shewry P R. Expression of an extended HMW subunit in transgenic wheat and the effect on dough mixing properties. Journal of Cereal Science, 2005, 42: 225-231.

[8]Blechl A, Lin J, Nguyen S, Chan R, Anderson O D, Dupont F M. Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. Journal of Cereal Science, 2007, 45: 172-183.

[9]Gadaleta A, Blechl A E, Nguyen S, Cardone M F, Ventura M, Quick J S, Blanco A. Stably expressed D-genome-derived HMW glutenin subunit genes transformed into different durum wheat genotypes change dough mixing properties. Molecular Breeding, 2008, 22: 267-279.

[10]Alvarez M L, Guelman S, Halford N G, Lustig S, Reggiardo M I, Ryabushkina N, Shewry P, Stein J, Vallejos R H. Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theoretical and Applied Genetics, 2000, 100: 319-327.

[11]Barro F, Barceló P, Lazzeri P A, Shewry P R, Martin A, Ballesteros J. Functional properties and agronomic performance of transgenic tritordeum expressing high molecular weight glutenin subunit genes 1Ax1 and 1Dx5. Journal of Cereal Science, 2003, 37: 65-70.

[12]Gadaleta A, Giancaspro A, Blechl A E, Blanco A. A transgenic durum wheat line that is free of marker genes and expresses 1Dy10. Journal of Cereal Science, 2008, 48(2): 439-445.

[13]Rakszegi M, Pastori G, Jones H D, Békés F, Butow B, Láng L, Bedö Z, Shewry P R. Technological quality of field grown transgenic lines of commercial wheat cultivars expressing the 1Ax1 HMW glutenin subunit gene. Journal of Cereal Science, 2008, 47: 310-321.

[14]张学勇, 庞斌双, 游光霞, 王兰芬, 贾继增, 董玉琛. 中国小麦品种资源Glu-1位点组成概况及遗传多样性分析. 中国农业科学, 2002, 35(11): 1302-1310.

Zhang X Y, Pang B S, You G X, Wang L F, Jia J Z, Dong Y C. Allelic variation and genetic diversity at Glu-1 loci in Chinese wheat (Triticum aestivum L.). Scientia Agricultura Sinica, 2002, 35(11): 1302-1310. (in Chinese)

[15]宋建民, 吴祥云, 刘建军, 刘爱峰, 赵振东, 刘广田. 小麦品质的麦谷蛋白亚基评定标准研究. 作物学报, 2003, 29(6): 829-834.

Song J M, Wu X Y, Liu J J, Liu A F, Zhao Z D, Liu G T. Study on quality scoring system assessed by wheat high-molecular-weight glutenin subunits. Acta Agronomica Sinica, 2003, 29(6): 829-834. (in Chinese)

[16]Brites C, Carrillo J M. Influence of high molecular weight (HMW) and low molecular weight (LMW) glutenin subunits controlled by Glu-1 and Glu-3 loci on durum wheat quality. Cereal Chemistry, 2001, 78(1): 59-63.

[17]邓志勇, 赵会贤, 范三红, 吉万全, 郭蔼光, 薛秀庄. 高分子量麦谷蛋白14和15亚基的纯化、N-末端序列及部分生化特性研究. 遗传学报, 2001, 28(1): 46-51.

Deng Z Y, Zhao H X, Fan S H, Ji W Q, Guo A G, Xue X Z. Purification and biochemical characterization of high-molecular- weight-glutenin subunits 14 and 15. Acta Genetica Sinica, 2001, 28(1): 46-51. (in Chinese)

[18]郭蔼光, 范三红, 赵惠贤. 小麦高分子量麦谷蛋白14亚基基因核酸序列及应用. 中国专利, 2005: ZL021145792.

Guo A G, Fan S H, Zhao H X. Wheat high-molecular-weight-glutenin subunits 14 gene sequence and application. China Patent, 2005: ZL021145792. (in Chinese)

[19]Liu X, Jin W, Liu J, Zhao H, Guo A. Transformation of wheat with the HMW-GS 1Bx14 gene without markers. Russian Journal of Genetics, 2011, 47(2): 182-188.

[20]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81: 8014-8018.

[21]Li Z, Murai N. Agronomic trait evaluation of field-grown transgenic rice plants containing the hygromycin resistance gene and the maize Activator element. Plant Science, 1995, 108: 219-227.

[22]Ortiz J P A, Reggiardo M I, Ravizzini R A, Altabe S G, Cervigni G D L, Spitteler M A, Morata M M, Elías F E, Vallejos R H. Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Reports, 1996, 15(12): 877-881.

[23]奚亚军, 范学科, 侯文胜, 张启发, 路  明. 小麦遗传转化中潮霉素适宜筛选浓度的研究. 西北农林科技大学学报: 自然科学版, 2003, 31(1): 39-42.

Xi Y J, Fan X K, Hou W S, Zhang Q F, Lu M. Study on the optimal mass concentration of hygromycin in wheat transformation. Journal of Northwest Science-Technology University of Agriculture and Forestry: Nature Science Edition, 2003, 31(1): 39-42. (in Chinese)

[24]Rasco-Gaunt S, Riley A, Cannell M, Barcelo P, Lazzeri P A. Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. Journal of Experimental Botany, 2001, 52: 865-874.

[25]Becker D, Brettschneider R, Lorz H. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. The Plant Journal, 1994, 5(2): 299-307.

[26]Iyer L M, Kumpatla S P, Chandrasekharan M B, Hall T C. Transgene silencing in monocots. Plant Molecular Biology, 2000, 43: 323-346.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!