Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (21): 4333-4339.doi: 10.3864/j.issn.0578-1752.2011.21.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Identification and Gene Mapping of a Novel Short Root Hair Mutant in Rice

 DING  Wo-Na, TONG  Yan-Li, WU  Jing, ZHU  Shi-Hua   

  1. 1.宁波大学科学技术学院/植物分子生物学研究室,浙江宁波 315211
    2.浙江大学生命科学学院/植物生理学与生物化学国家重点实验室,杭州 310058
  • Received:2011-04-22 Online:2011-11-01 Published:2011-05-27

Abstract: 【Objective】The identification and cloning of novel root hair-related genes in rice would play an important role in understanding the molecular genetic mechanisms of root hair development.【Method】A rice (Oryza sativa L.) mutant was isolated from a T-DNA insertion mutant library. Solution culture, phenotypic study, statistics analysis of segregation of different phenotypes as well as gene mapping by map-based cloning were used to study the phenotypic and genetic characteristics of the Ossrh1 mutant and map the OsSRH1 gene. 【Result】 The root hairs of young mutant seedlings were shorter and only 36% of the wild type. Genetic analysis indicated that the mutation was controlled by a single recessive nuclear gene. To map the OsSRH1 gene, an F2 population was generated by crossing the mutant Ossrh1 with wild type Kasalath. OsSRH1 was firstly mapped between the microsatellite markers RM3183 and RM193 on chromosome 6 with genetic distance of 0.9 cM and 1.0 cM, respectively. Three new polymorphic STS (sequence-tagged site) markers were developed in the region. OsSRH1 was finally mapped between markers T1757 and T1768 with a distance of 115 kb. 【Conclusion】 The Ossrh1 mutant is controlled by a recessive nuclear gene, which is located on chromosome 6, between T1757 and T1768 with a physical distance of 115 kb.

Key words: rice (Oryza sativa L.), short root hair mutant, genetic analysis, gene mapping

[1]Gilroy S, Jones D L. Through form to function: Root hair development and nutrient uptake. Trends in Plant Science, 2000, 5(2): 56-60.

[2]Cho H T, Cosgrove D J. Regulation of root hair initiation and expansin gene expression in Arabidopsis. The Plant Cell, 2002, 14(12): 3237-3253.

[3]Baumberger N, Steiner M, Ryser U, Keller B, Ringli C. Synergistic interaction of the two paralogous Arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development. The Plant Journal, 2003, 35(1): 71-81.

[4]Favery B, Ryan E, Foreman J, Linstead P, Boudonck K, Steer M, Shaw P, Dolan L. KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes and Development, 2001, 15: 79-89.

[5]Seifert G J, Barber C, Wells B, Dolan L, Roberts K. Galactose biosynthesis in Arabidopsis: Genetic evidence for substrate channeling from UDP-D-galactose into cell wall polymers. Current Biology, 2002, 12(21): 1840-1845.

[6]Jiang C J, Weeds A G, Hussey P J. The maize actin-depolymerizing factor, ZmADF3, redistributes to the growing tip of elongating root hairs and can be induced to translocate into the nucleus with actin. The Plant Journal, 1997, 12(5): 1035-1043.

[7]Ramachandran S, Christensen H E, Ishimaru Y, Dong C H, Chao-Ming W, Cleary A L, Chua N H. Profilin plays a role in cell elongation, cell shape maintenance and flowering in Arabidopsis. Plant Physiology, 2000, 124(4): 1637-1647.

[8]Ringli C, Baumberger N, Diet A, Frey B, Keller B. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiology, 2002, 129(4): 1464-1472.

[9]Böhme K, Li Y, Charlot F, Grierson C, Marrocco K, Okada K, Laloue M, Nogué F. The Arabidopsis COW1 gene encodes a phosphatidylinositol transfer protein essential for root hair tip growth. The Plant Journal, 2004, 40(5): 686-698.

[10]Hemsley P A, Kemp A C, Grierson C S. The TIP GROWTHD EFECTIVE1 S-Acyl transferase regulates plant cell growth in Arabidopsis. The Plant Cell, 2005, 17(9): 2554-2563.

[11]Stenzel I, Ischebeck T, König S, Ho1ubowska A, Sporysz M, Hause B, Heilmann I. The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. The Plant Cell, 2008, 20(1): 124-141.

[12]Desbrosses G, Josefsson C, Rigas S, Hatzopoulos P, Dolan L. AKT1 and TRH1 are required during root hair elongation in Arabidopsis. Journal of Experimental Botany, 2003, 54(383): 781-788.

[13]Foreman J, Demidchik V, Bothwell J H, Mylona P, Miedema H, Torres M A, Linstead P, Costa S, Brownlee C, Jones J D, Davies J, Dolan L. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 2003, 422: 442-446.

[14]Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann K A, Grabov A, Dolan L, Hatzopoulos P. TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. The Plant Cell, 2001, 13(1): 139-151.

[15]Song X F, Yang C Y, Liu J, Yang W C. RPA, a ClassⅡ ARFGAP protein, activates ARF1 and U5 and plays a role in root hair development in Arabidopsis. Plant Physiology, 2006, 141(3): 966-976.

[16]Xu J, Scheres B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR1 function in epidermal cell polarity. The Plant Cell, 2005, 17(2): 525-536.

[17]Yoo C M, Wen J, Motes C M, Sparks J A, Blancaflor E B. A ClassⅠADP-Ribosylation factor GTPase-Activating protein is critical for maintaining directional root hair growth in Arabidopsis. Plant Physiology, 2008, 147(4): 1659-1674.

[18]Ding W N, Yu Z M, Tong Y L, Huang W, Chen H M, Wu P. A transcription factor with a bHLH domain regulates root hair development in rice. Cell Research, 2009, 19: 1309-1311.

[19]Kim C M, Park S H, Je B I, Park S H, Park S J, Piao H L, Eun M Y, Dolan L, Han C D. OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiology, 2007, 143(3): 1220-1230.

[20]You T, Toyota M, Ichii M, Taketa S. Molecular cloning of a root hairless gene rth1 in rice. Breeding Science, 2009, 59(1): 13-20.

[21]Yu Z M, Kang B, He X W, Lv S L, Bai Y H, Ding W N, Chen M, Cho H, Wu P. Root hair-specific EXPANSINs modulate root hair elongation in rice. The Plant Journal (online), 2011, doi:10.1111/ j.1365-313X. 2011.04533.x.

[22]Yoshida S, Forno D A, Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice. 3rd ed. Manila: The International Rice Research Institute, 1976: p62.

[23]张向前, 邹金松, 朱海涛, 李晓燕, 曾瑞珍. 水稻早熟多子房突变体fon5的遗传分析和基因定位. 遗传, 2008, 30(10): 1349-1355.

Zhang X Q, Zou J S, Zhu H T, Li X Y, Zeng R Z. Genetic analysis and gene mapping of an early flowering and multi-ovary mutant in rice (Oryza sativa L.). Hereditas, 2008, 30(10): 1349-1355. (in Chinese)

[24]Michelmore R W, Papan I, Kesseli R V. Identification of markers linked to disease resistance genes by bulked segregantanalysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the USA, 1991, 88(21): 9828-9832.

[25]Gahoonia T S, Nielsen N E. Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant and Soil, 2004, 262: 55-62.

[26]Peremyslov V V, Prokhnevsky A I, Avisar D, Dolja V V. Two classⅪ myosins function in organelle trafficking and root hair development in Arabidopsis. Plant Physiology, 2008, 146(3): 1109-1116.

[27]Wen T J, Schnable P S. Analyses of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. American Journal Botany, 1994, 81(7): 833-842.

[28]Wen T J, Hochholdinger F, Sauer M, Bruce W, Schnable P S. The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiology, 2005, 138(3): 1637-1643.

[29]Hochholdinger F, Wen T J, Zimmermann R, Chimot-Marolle P, da Costa e Silva O, Bruce W, Lamkey K R, Wienand U, Schnable P S. The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield. The Plant Journal, 2008, 54(5): 888-898.

[30]Engvild K C, Rasmussen S K. Root hair mutants of barley. Barley Gentics Newsletter, 2004, 34: 13-15.

[31]Gahoonia T S, Nielsen N E, Joshi P A, Jahoor A. A roothairless barley mutant for elucidating genetic of root hairs and phosphorus uptake. Plant and Soil, 2001, 235(2): 211-219.

[32]Kwasniewski M, Szarejko I. Molecular cloning and characterization of β-expansin gene related to root hair formation in barley. Plant Physiology, 2006, 141(3): 1149-1158.
[1] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[2] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[3] DIAO WeiNan,YUAN PingLi,GONG ChengSheng,ZHAO ShengJie,ZHU HongJu,LU XuQiang,HE Nan,YANG DongDong,LIU WenGe. Genetic Analysis and Gene Mapping of Canary Yellow in Watermelon Flesh [J]. Scientia Agricultura Sinica, 2021, 54(18): 3945-3958.
[4] XU XinYang,SHEN Jia,ZHANG YueJian,LI GuoJing,NIU XiaoWei,SHOU WeiSong. Fine Mapping of an Immature Rind Color Gene GR in Melon [J]. Scientia Agricultura Sinica, 2021, 54(15): 3308-3319.
[5] ZHANG Shuo,ZHI Hui,TANG ChanJuan,LUO MingZhao,TANG Sha,JIA GuanQing,JIA YanChao,DIAO XianMin. Cytological Characters Analysis and Low-Resolution Mapping of Stripe-Leaf MutantA36-S in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(14): 2952-2964.
[6] MA Jian, LI CongCong, HUANG YaTing, XIE YuLi, CHENG LingLing, WANG JianShe. Fine Mapping and Candidate Gene Analysis of Seed Coat Color Gene CmSC1 in Melon [J]. Scientia Agricultura Sinica, 2021, 54(10): 2167-2178.
[7] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[8] Jian MA,CongCong LI,JianShe WANG. Fine Mapping and Candidate Gene Analysis of a Short Internodes Gene Cmdm1 in Melon (Cucumis melo L.) [J]. Scientia Agricultura Sinica, 2020, 53(4): 802-810.
[9] DUAN YouHou,LU Feng. Genetic Analysis on Growth Period and Plant Height Traits of Early-maturing Dwarf Sorghum Male-Sterile Line P03A [J]. Scientia Agricultura Sinica, 2020, 53(14): 2828-2839.
[10] LIANG HuiZhen,XU LanJie,DONG Wei,YU YongLiang,YANG HongQi,TAN ZhengWei,LI Lei,LIU XinMei. Mixed Inheritance Analysis and QTL Mapping for γ-Tocopherol Content in Soybean [J]. Scientia Agricultura Sinica, 2020, 53(11): 2149-2160.
[11] GONG ChengSheng, ZHAO ShengJie, LU XuQiang, HE Nan, ZHU HongJu, DOU JunLing, YUAN PingLi, LI BingBing, LIU WenGe. Chemical Compositions and Gene Mapping of Wax Powder on Watermelon Fruit Epidermis [J]. Scientia Agricultura Sinica, 2019, 52(9): 1587-1600.
[12] ZHOU JiaQin,ZHU JunZhao,YANG SiXue,ZHU ZhouJie,YAO Jie,ZHENG WenJuan,ZHU ShiHua,DING WoNa. Cloning and Functional Analysis of a Root Development Related Gene OsKSR7 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 777-785.
[13] BAI TuanHui,LI Li,ZHENG XianBo,WANG MiaoMiao,SONG ShangWei,JIAO Jian,SONG ChunHui. Screening and Expression Analysis of Co Candidate Genes in Columnar Apple [J]. Scientia Agricultura Sinica, 2019, 52(23): 4350-4363.
[14] SONG Xi, PU DingFu, TIAN LuShen, YU QingQing, YANG YuHeng, Dai BingBing, ZHAO ChangBin, HUANG ChengYun, DENG WuMing. Genetic Analysis and Characterization of Hormone Response of Semi-Dwarf Mutant dw-1 in Brasscia napus L. [J]. Scientia Agricultura Sinica, 2019, 52(10): 1667-1677.
[15] XIE Jia, ZHANG XiaoBo, TAO YiRan, XIONG YuZhen, ZHOU Qian, SUN Ying, YANG ZhengLin, ZHONG BingQiang, SANG XianChun. Identification and Gene Mapping of a Shorten Panicle and Seed Mutant sps1 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2018, 51(9): 1617-1626.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!