Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (18): 3465-3476.doi: 10.3864/j.issn.0578-1752.2016.18.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Progresses in Research on Cotton High Yield Breeding in China

YU Shu-xun, FAN Shu-li, WANG Han-tao, WEI Heng-ling, PANG Chao-you   

  1. Cotton Research Institute, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan
  • Received:2016-04-18 Online:2016-09-16 Published:2016-09-16

Abstract: Cotton is an important economic crop in China, the stable development of cotton production is concerned with the interests of 20 million of farmers. Yield is the most important trait on the premise of the comprehensive development of other traits, so high yield is the most important goal of cotton planting. From 1950 to 2015, the cotton yield per unit area in China was increased by more than 9 times, and the introduction and improvement of varieties have made a great contribution to the increase of cotton yield. In recent years, the improvement of cotton yield per unit area was slow because of the narrow genetic diversity, hindering seriously the development of cotton industry. Cotton yield per unit area contains four major components, stock number per unit area, boll number per plant, single boll weight and lint percentage. This paper analyzed the roles of four components in cotton planting. Boll number per plant and lint percentage are more important for the cotton yield breeding, but the improvement of cotton yield is a complex progress which need every trait coordinated properly. At the same time, this paper discussed the important ways and its research progress to be used for high-yield breeding. Germplasm introduction has played an important role in raising cotton yield and replaced the Gossypium arboreum varieties of lower productivity and poor quality in China, and promoting the development of cotton breeding in China. Some significant varieties were cultivated by conventional breeding, for example, early maturing cotton CCRI 16, high-yielding cotton variety Lumian1, high-yielding and disease-resistant variety CCRI 12 etc. These varieties promoted the development of cotton industry in China, and which were the important parents of cotton breeding. The utilization of heterosis is an effective approach to cotton breeding of high yield and good quality. Lots of significant hybrids were cultivated by cross breeding. For example, the planting area of CCRI 29 once accounted for 50% of hybrid cotton in Yangtze River basin of China. And the research of male sterility line plays a key role for sustainable development of heterosis utilization. The development of molecular marker technology provides technical supports for molecular breeding of cotton, and multiple stable QTL related with yield trait has laid a foundation for molecular mark assisted breeding. The development of transgenic technology provides an opportunity for cotton molecular design breeding. The discovered genes related with yield trait are few, so more work should be done on the excavation of new genes. At present, the cotton yield per unit area in China is at the international leading level. Because China has more people and less land, the increase of cotton yield per unit area is a way out for cotton industry based on the premise that not to reclaim land under food crops. So the following suggestions were put forward: It is necessary to collect plant resources and pay more attention to the innovation of germplasm resources; the cytoplasmic male sterility (CMS) research should be strengthened, the seed production technology and cost should be simplified and promoting the potential of hybrid breeding; exploring the high yield related genes using high-throughput sequencing technologies in whole genome for molecular marker assisted breeding and genome-wide selective breeding; it is significant to cultivate new varieties with high-yield, good quality, early-maturing and suitable for mechanization planting with pyramiding breeding.

Key words: cotton, yield trait, cross-breeding, heterosis, molecular breeding

[1]    Chen Z J, Scheffler B E, Dennis E, Triplett B A, Zhang T, Guo W, Chen X, Stelly D M, Rabinowicz P D, Town C D, Arioli T, Brubaker C, Cantrell R G, Lacape J M, Ulloa M, Chee P, Gingle A R, Haigler C H, Percy R, Saha S, Wilkins T, Wright R J, Van Deynze A, Zhu Y, Yu S, Abdurakhmonov I, Katageri I, Kumar P A, Mehboob Ur R, Zafar Y, Yu J Z, Kohel R J, Wendel J F, Paterson A H. Toward sequencing cotton (Gossypium) genomes. Plant Physiology, 2007, 145(4): 1303-1310.
[2]    孔繁玲, 姜保功, 张群远, 杨付新, 李如忠, 刘永平, 赵素兰, 郭腾龙. 建国以来我国黄淮棉区棉花品种的遗传改良. 作物学报, 2000, 26(2): 148-156.
Kong F L, Jiang B G, Zhang Q Y, Yang F X, Li R Z, Liu Y P, Zhao S L, Guo T L. Genetic improvements of cotton varieties in Huang-Huai region in China since 1950s. Acta Agtonomica Sinica, 2000, 26(2): 148-156. (in Chinese)
[3]    Kerr T. Yield components in cotton and their interrelations with fiber quality. 18th cotton improvement conference. National Cotton Council, Memphis, 1966: 276-287.
[4]    Worley S, Ramey H H, Harrell D, Culp T. Ontogenetic model of cotton yield. Crop Science, 1976, 16(1): 30-34.
[5]    陈仲方, 谢其林, 承泓良, 滕传元, 沈端庄, 肖庆芳, 胡廷馨, 顾立美. 棉花产量结构模式的研究及其在育种上应用的意义. 作物学报, 1981, 7(4): 232-239.
Chen Z F, Xie Q L, Cheng H L, Teng C Y, Shen D Z, Xiao Q F, Hu T X, Gu L M. Studies on the structural model of cotton yield and its implications on cotton breeding. Acta Agtonomica Sinica, 1981, 7(4): 232-239. (in Chinese)
[6]    骆雪娇. 棉花不同密度效应研究[D]. 武汉: 华中农业大学, 2010.
Luo X J. Effect of different density on cotton[D]. Wuhan: Huazhong Agriculture University, 2010. (in Chinese)
[7]    韩焕勇, 邓福军, 李保成, 杨宝玉, 杨利勇, 林海, 王新亭. 种植密度对新疆高产棉花产量和品质的影响. 江苏农业科学, 2009, 4(45): 98-100.
Han H Y, Deng F J, Li B C, Yang B Y, Yang L Y, Lin H, Wang X T. Effect of plant density on yield and quality of high yield cotton in Xinjiang. Jiangsu Agricultural Sciences, 2009, 4(45): 98-100. (in Chinese)
[8]    宁新柱, 林海, 宿俊吉, 李吉莲, 刘萍, 邓福军, 段理慧, 安刚. 不同种植密度对棉花产量性状的影响. 安徽农业科学, 2011, 39(15): 8878-8880.
Ning X Z, Lin H, Su J J, Li J L, Liu P, Deng F J, Duan L H, An G. Influence of different planting densities on the yield traits of cotton. Anhui Agricultural Sciences, 2011, 39(15): 8878-8880. (in Chinese)
[9]    邓福军, 林海, 宿俊吉, 韩焕勇. 棉花种植密度与产量形成的关系. 新疆农业科学, 2011, 48(12): 2191-2196.
Deng F J, Lin H, Su J J, Han H Y. Relation of yield forming and planting density in cotton. Xinjiang Agricultural Sciences, 2011, 48(12): 2191-2196. (in Chinese)
[10]   任晓明, 杜明伟, 田晓莉, 段留生, 李召虎, 尹晓芳, 郭宝全, 孙艳芹. 种植密度、缩节胺及脱叶催熟剂对黄河流域棉区棉花产量和早熟性的影响//中国棉花学会2012年年会暨第八次代表大会论文汇编. 中国棉花, 2012: 178.
Ren X M, Du M W, Tian X L, Duan L S, Li Z H, Yin X F, Guo B H, Sun Y Q. effects of plant density, mepiquat chloride, and harvest aids on cotton yield and earliness in yellow river area. The Chinese society of cotton 2012 years annual meeting and the eighth congress proceedings, China Cotton, 2012: 178. (in Chinese)
[11]   戴茂华, 吴振良, 刘丽英, 马俊永. 种植密度对棉花生育动态、产量和品质的影响. 华北农学报, 2014, 29: 146-154.
Dai M H, Wu Z L, Liu L Y, Ma J Y. Influence of planting density on development, yield and quality of Upland cotton. Acta Agriculturae Boreali-Sinica, 2014, 29: 146-154. (in Chinese)
[12]   路正营, 李世云, 韩永亮, 杨玉枫, 崔红印. 种植密度对晚春播早熟棉生育动态和产量的影响. 河北农业科学, 2013, 17(1): 16-18.
Lu Z Y, Li S Y, Han Y L, Yang Y F, Cui H Y. Effects of planting density on growth trends and yields of early- maturing cotton in the late spring sowing mode. Hebei Agricultural Sciences, 2013, 17(1): 16-18. (in Chinese)
[13]   中国农业科学院棉花研究所. 中国棉花遗传育种学. 济南: 山东科学技术出版社, 2003.
Institute of cotton research of CAAS. Genetics and breeding of cotton in China. Jinan: Shandong Technology Press, 2003. (in Chinese)
[14]   周有耀. 论棉花的产量因素. 北京农业大学学报, 1986, 12(8): 269-274.
Zhou Y Y. On yield components of Upland cotton. Acta Agriculturae Universitatis Pekinensis, 1986, 12(8): 269-274. (in Chinese)
[15]   沈仍愚. 关于提高棉花铃重问题的探讨. 棉花, 1978: 6-12.
Shen R Y. Discusses on how to improve the cotton boll weight. Cotton, 1978: 6-12. (in Chinese)
[16]   姜保功, 孔繁玲, 张群远, 姜茹琴, 何鉴星, 张欣雪. 棉花产量组分的改良对产量的影响. 棉花学报, 2000, 12(5): 258-260.
Jiang B G, Kong F L, Zhang Q Y, Jiang R Q, He J X, Zhang X X. Effects of improvements of cotton yield components. Acta Gossypii Sinica, 2000, 12(5): 258-260. (in Chinese)
[17]   韩世杰, 韩广琴, 江丽秀, 崔世友. 棉花高产育种方法探讨. 江西棉花, 1996, 5: 11-13.
Han S J, Han G Q, Jiang L X, Cui S Y. Discusses on methods of cotton high-yield breeding. Jiangxi Cotton, 1996, 5: 11-13. (in Chinese)
[18]   杨伯祥, 周宜军, 王治斌. 陆地棉产量结构因素分析. 江西棉花, 1998, 4: 7-10.
Yang B Y, Zhou Y J, Wang Z B. Analysis of Upland cotton yield components. Jiangxi Cotton, 1998, 4: 7-10. (in Chinese)
[19]   李成奇, 郭旺珍, 张天真. 衣分不同陆地棉品种的产量及产量构成因素的遗传分析. 作物学报, 2009, 35(11): 1990-1999.
Li C Q, Guo W Z, Zhang T Z. Quantitative inheritance of yield and its components in Upland cotton (Gossypium hirsutum L.) cultivars with varied lint percentages. Acta Agtonomica Sinica, 2009, 35(11): 1990-1999. (in Chinese)
[20]   张天真. 作物育种学总论. 北京: 中国农业出版社, 2003.
Zhang T Z. Crop breeding general. Beijing: China Agriculture Press, 2003. (in Chinese)
[21]   买买提·莫明, 李雪源, 艾先涛, 王俊铎, 吐逊江, 多里坤. 新疆棉花超高产育种技术初探. 中国棉花, 2010, 37(4): 5-7.
Maimaiti M M, Li X Y, Ai X T, Wang J D, Tu X J, Duo L K. Discusses on cotton high-yield breeding technology in Xinjiang. China Cotton, 2010, 37(4): 5-7. (in Chinese)
[22]   廖雪, 朱东生. 棉花杂种优势利用的回顾与展望. 江西棉花, 2009, 31(5): 7-10.
Liao X, Zhu D S. Review and prospect on cotton heterosis utilization. Jiangxi Cotton, 2009, 31(5): 7-10. (in Chinese)
[23]   Meredith W R. Quantitative genetics. Cotton, 1984: 131-150.
[24]   张正圣, 李先碧, 刘大军, 肖月华, 罗明, 黄顺礼, 张凤鑫. 陆地棉高强纤维品系和Bt基因抗虫棉的配合力与杂种优势研究. 中国农业科学, 2002, 35(12): 1450-1455.
Zhang Z S, Li X B, Liu D J, Xiao Y H, Luo M, Huang S L, Zhang F X. Study on combining ability and heterosis between high strength lines and Bt (Bacillus thuringiensis) bollworm-resistant lines in Upland cotton (Gossypium hirsutum L.). Scientia Agricultura Sinica, 2002, 35(12): 1450-1455. (in Chinese)
[25]   Lee M. DNA markers and plant breeding programs. Advances in agronomy, 1995.
[26]   李付广, 袁有禄. 棉花分子育种学. 北京: 中国农业大学出版社, 2013.
Li F G, Yuan Y L. Cotton molecular breeding. Beijing: China Agricultural University Press, 2013. (in Chinese)
[27]   He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Feng C D, Stewart J M. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica, 2005, 144(1/2): 141-149.
[28]   陈利, 张正圣, 胡美纯, 王威, 张建, 刘大军, 郑靓, 郑风敏, 马靖. 陆地棉遗传图谱构建及产量和纤维品质性状QTL定位. 作物学报, 2008, 34(7): 1199-1205.
Chen L, Zhang Z S, Hu M C, Wang W, Zhang J, Liu D J, Zheng L, Zheng F M, Ma J. Genetic linkage map construction and QTL mapping for yield and fiber quality in Upland cotton (Gossypium hirsutum L.). Acta Agtonomica Sinica, 2008, 34(7): 1199-1205. (in Chinese)
[29]   Liu R Z, Wang B H, Guo W Z, Qin Y S, Wang L G, Zhang Y M, Zhang T Z. Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L.. Molecular Breeding, 2012, 29(2): 297-311.
[30]   Mei H X, Zhu X F, Zhang T Z. Favorable QTL alleles for yield and its components identified by association mapping in Chinese Upland cotton cultivars. Plos One, 2013, 8: e82193.
[31]   Yu J W, Yu S X, Gore M, Wu M, Zhai H H, Li X L, Fan S L, Song M Z, Zhang J F. Identification of quantitative trait loci across interspecific F2, F2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica, 2013, 191(3): 375-389.
[32]   Yu J W, Zhang K, Li S Y, Yu S X, Zhai H H, Wu M, Li X L, Fan S L, Song M Z, Yang D G, Li Y H, Zhang J F. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theoretical and Applied Genetics, 2013, 126(1): 275-287.
[33]   Ning Z Y, Chen H, Mei H X, Zhang T Z. Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala- Prema. Euphytica, 2014, 195(1): 143-156.
[34]   Xia Z, Zhang X, Liu Y Y, Jia Z F, Zhao H H, Li C Q, Wang Q L. Major gene identification and quantitative trait locus mapping for yield-related traits in Upland cotton (Gossypium hirsutum L.). Journal of Integrative Agriculture, 2014, 13(2): 299-309.
[35]   Wang H T, Huang C, Guo H L, Li X M, Zhao W X, Dai B S, Yan Z H, Lin Z X. QTL Mapping for fiber and yield traits in Upland cotton under multiple environments. Plos One, 2015, 10: e0130742.
[36]   林忠旭, 冯常辉, 郭小平, 张献龙. 陆地棉产量、纤维品质相关性状主效QTL和上位性互作分析. 中国农业科学, 2009, 42(9): 3036-3047.
Lin Z X, Feng C H, Guo X P, Zhang X L. Genetic analysis of major QTLs and epistasis interaction for yield and fiber quality in Upland cotton. Scientia Agricultura Sinica, 2009, 42(9): 3036-3047. (in Chinese)
[37]   Guo W Z, Ma G J, Zhu Y C, Yi C X, Zhang T Z. Molecular tagging and mapping of quantitative trait loci for lint percentage and morphological marker genes in Upland cotton. Journal of Integrative Plant Biology, 2006, 48(3): 320-326.
[38]   张锐, 王远, 孟志刚, 孙国清, 郭三堆. 国产转基因抗虫棉研究回顾与展望.中国农业科技导报, 2007, 9(4): 32-42.
Zhang R, Wang Y, Meng Z G, Sun G Q, Guo S D. Retrospect and prospect of research on Chinese transgenic insecticidal cotton. Journal of Agricultural Science and Technology, 2007, 9(4): 32-42. (in Chinese)
[39]   刘锡娟, 刘昱辉, 王志兴, 王旭静, 张永强. 转5-烯醇式丙酮酰莽草酸-3-磷酸合酶(EPSPS)基因抗草甘膦烟草和棉花的获得. 农业生物技术学报, 2007, 15(6): 958-963.
Liu X J, Liu Y H, Wang Z X, Wang X J, Zhang Y Q. Generation of glyphosate-tolerant transgenic tobacco and cotton by transformation with a 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS ) gene. Journal of Agricultural Biotechnology, 2007, 15(6): 958-963. (in Chinese)
[40]   沈法富, 于元杰, 尹承佾. 抗盐碱罗布麻DNA导入棉花的研究. 棉花学报, 1995, 7(1): 18-21.
Shen F F, Yu Y J, Yin C Y. Studies on introducing salt resisitance DNA of dogbane into cotton. Cotton Science, 1995, 7(1): 18-21. (in Chinese)
[41]   Tang W X, Tu L L, Yang X Y, Tan J F, Deng F L, Hao J, Guo K, Lindsey K, Zhang X L. The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. New Phytologist, 2014, 202(2): 509-520.
[42]   Hao J, Tu L L, Hu H Y, Tan J F, Deng F L, Tang W X, Nie Y  C, Zhang X L. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. Journal of Experimental Botany, 2012, 63(17): 6267-6281.
[43]   杜雄明, 孙君灵, 周忠丽, 贾银华, 潘兆娥, 何守朴, 庞保印, 王立如. 棉花资源收集、保存、评价与利用现状及未来. 植物遗传资源学报, 2012, 13(2): 163-168.
Du X M, Sun J L, Zhou Z L, Jia Y H, Pan Z E, He S P, Pang B Y, Wang L R. Current situation and the future in collection, preservation, evaluation and utilization of cotton germplasm in China. Plant Genetic Resources, 2012, 13(2): 163-168. (in Chinese)
[44]   王坤波. 野生棉的收集与保存. 棉花学报, 2007, 19(5): 354-361.
Wang K B. Introduction and conservation of wild cotton in China. Cotton Science, 2007, 19(5): 354-361. (in Chinese)
[45]   汪志国, 王思明. 美棉在中国的引种与发展. 中国农学通报, 2006, 22(2): 421-426.
Wang Z G, Wang S M. Introduction and development of American cotton in China. Chinese Agricultural Science Bulletin, 2006, 22(2): 421-426. (in Chinese)
[46]   朱荣. 当代中国的农作物业. 北京:中国社会科学出版社, 1988: 216.
Zhu R. Contemporary China's agricultural industry. Beijing: China Social Sciences Press, 1988: 216. (in Chinese)
[47]   汪若海, 潘家驹. 棉花育种方法的演进与评价. 南京农业大学学报, 1987, 1: 6-11.
Wang R H, Pan J J. The development and evaluation of cotton breeding programs in our country. Journal of Nanjing Agricultural University, 1987, 1: 6-11. (in Chinese)
[48]   郭红云. 鲁棉1号的成功选育与推广. 联合日报, 2010, 1: 1-2.
Guo H Y. Successful breeding and popularization of Lumian 1. Union Daily, 2010, 1: 1-2. (in Chinese)
[49]   杨绍相. 棉花新品种-鲁棉6号. 中国棉花, 1985, 3: 17.
Yang S X. New cotton varieties-Lumian 6. China Cotton, 1985, 3: 17. (in Chinese)
[50]   郭香墨, 谭联望, 刘正德. 中棉所12的种质资源价值评估. 中国棉花, 2002, 29(12): 12-14.
Guo X M, Tan L W, Liu Z D. Germplasm resources evaluation of CCRI 12. China Cotton, 2002, 29(12): 12-14. (in Chinese)
[51]   赵丽芬. 棉属种间杂交新品种-石远321的选育. 中国棉花, 1996, 11: 25.
ZHAO L F. Cotton hybrid varieties-Shiyuan 321. China Cotton, 1996, 11: 25. (in Chinese)
[52]   黄祯茂, 喻树迅, 刁光中, 原日红, 姜瑞云. 适合麦棉两熟夏套棉花新品种一中棉所16. 中国新技术新产品精选, 1997, 1: 14.
Huang Z M, Yu S X, Diao G Z, Yuan R H, Jiang R Y. CCRI16, a new cotton variety suitable to summer-interplantation for wheat- cotton amphicarpous. Chinese Selected New Technologies and Products, 1997, 1: 14. (in Chinese)
[53]   李雪源, 郑巨云, 王俊铎, 吐尔逊江, 艾先涛, 莫明, 多力坤. 中国棉业科技进步30年-新疆篇. 中国棉花, 2009, 36: 24-29.
LI X Y, ZHENG J Y, WANG J D, TUER X J, AI X T, MO M, DUO L K. Thirty years of science and technology progress in China's cotton industry-Xinjiang. China Cotton, 2009, 36: 24-29. (in Chinese)
[54]   尤满仓. 陆地棉-军棉一号. 新疆农垦科技, 1979, 5: 60.
YOU M C. Upland cotton-Junmian 1. Xinjiang Farmland Reclamation Science & Technolog, 1979, 5: 60. (in Chinese)
[55]   马晓梅, 李保成, 李生秀, 周小凤, 肖光顺. 优良早熟陆地棉新陆早33号的选育及推广. 安徽农学通报, 2009, 15(5): 130.
MA X M, LI B C, LI S X, ZHOU X F, XIAO G S. Beeding and extension of excellent early-maturing upland cotton-Xinluzao 33. Anhui Agricultural Science Bulletin, 2009, 15(5): 130. (in Chinese)
[56]   朱家辉, 宁新民, 孔庆平, 孔杰, 张胜, 徐海江. 高产抗病棉花新品种-新陆中54号. 中国棉花, 2012, 39(8): 33.
ZHU J H, NING X M, KONG Q P, KONG J, ZHANG S, XU H J. High yield and disease-resistant cotton varieties-Xinluzhong 54. China Cotton, 2012, 39(8): 33. (in Chinese)
[57]   孙济中, 刘金兰, 张金发. 棉花杂种优势的研究和利用. 棉花学报, 1994, 6(3): 135-139.
Sun J Z, Liu J L, Zhang J F. A review on research and utilization of hybrid vigor of cotton. Cotton Science, 1994, 6(3): 135-139. (in Chinese)
[58]   邢朝柱, 靖深蓉, 袁有禄, 郭立平, 刘少林, 王海林. 抗虫杂交棉-中棉所29. 中国棉花, 1998, 25(7): 23.
Xing C Z, Jing S R, Yuan Y L, GUO L P, Liu S L, Wang H L. Insect-resistant hybrid cotton-CCRI 29. China Cotton, 1998, 25(7): 23. (in Chinese)
[59]   聂以春, 张献龙, 郭小平. 高产抗虫杂交棉-华杂棉H318. 中国棉花, 2010, 2: 26.
Nie Y C, Zhang X L, Guo X P. High yield and insect-resistant hybrid cotton-Huazamian H318. China Cotton, 2010, 2: 26. (in Chinese)
[60]   匡政成, 李痒, 张学文, 李育强, 匡逢春. 我国杂交棉产业发展现状及建议. 湖南农业科学, 2012, 22: 37-39.
Kuang Z C, Li Y, Zhang X W, Li Y Q, Kuang F C. Development situation and suggestion of hybrid cotton in China. Hunan Agricultural Sciences, 2012, 22: 37-39. (in Chinese)
[61]   靖深蓉, 邢朝柱, 袁有禄, 刘少林, 王海林. 中杂028的选育及应用. 中国棉花, 1995, 22(12): 22-23.
Jing S R, Xing C Z, Yuan Y L, Liu S L, Wang H L. Beeding and application of Zhongza 028. China Cotton, 1995, 22(12): 22-23. (in Chinese)
[62]   李汝忠, 王宗文, 王景会, 葛逢珠, 申贵芳. 抗虫杂交棉新品种鲁棉研15简介. 中国棉花, 2000, 27(2): 33.
Li R Z, Wang Z W, WANG J H, GE F Z, Shen G F. Transgenic anti-insect hybrid cotton-Lumianyan 15. China Cotton, 2000, 27(2): 33. (in Chinese)
[63]   余庆来. 杂交棉新品种皖杂40. 中国农村科技, 1998, 11: 19.
Yu Q L. Hybrid cotton-Wanza 40. China Rurac Science & Technology, 1998, 11: 19. (in Chinese)
[64]   施尚泽. 四川棉花核不育杂交种利用研究进展与前景. 中国棉花, 1994, 21(3): 2-4.
Shi S Z. Research progress and prospects of nuclear sterility hybrid cotton in Sichuan. China Cotton, 1994, 21(3): 2-4. (in Chinese)
[65]   顾增义, 焦明玺. 鲁棉13号杂交制种技术. 种子科技, 1995, 2: 43.
Gu Z Y, Jiao M X. Hybridization breeding technology of Lumian 13. Zhongzikeji, 1995, 2: 43. (in Chinese)
[66]   曲辉英, 隋玉君, 郭三堆. 转基因抗虫杂交棉鲁RH-1. 中国种业, 2002, 2: 50.
Qu H Y, Sui Y J, Guo S D. Transgenic anti-insect hybrid cotton-Lu RH-1. China Seed Industry, 2002, 2: 50. (in Chinese)
[67]   王庆华, 承泓良, 陈国平, 蒋玉琴, 冷苏凤. 棉花新品种苏棉17号选育. 江苏农业科学, 2000, 5: 28.
Wang Q H, Cheng H L, Chen G P, Jiang Y Q, Leng S F. New cotton variety-Sumian 17. Jiangsu Agricultural Sciences, 2000, 5: 28. (in Chinese)
[68]   邹勇, 朱桢明, 杨仁松, 许华兵, 吴建功, 赵春波. 核不育组合鄂杂棉8号选育及特征特性. 中国棉花, 2004, 31(7): 17-26.
Zou Y, Zhu Z M, Yang R S, Xu H B, Wu J G, Zhao C B. Breeding process and characteristics of nuclear sterility variety Ezamian 8. China Cotton, 2004, 31(7): 17-26. (in Chinese)
[69]   马维军, 任爱民. 抗病虫三系杂交棉邯杂98-1选育及栽培要点. 河北农业科技, 2002, 5: 20.
Ma W J, Ren A M. Breeding process and cultivation technique of there-line hybrid cotton Hanza 98-1 of disease and insect resistance. Hebei Nongye Keji, 2002, 5: 20. (in Chinese)
[70]   邢朝柱, 郭立平, 吴建勇, 戚廷香, 王海林, 乔秀芹, 唐会妮. 转基因抗虫三系杂交棉-中棉所83. 中国棉花, 2012, 7: 39.
Xing C Z, Guo L P, Wu J Y, Qi T X, Wang H L, Qiao X Q, Tang H N. Transgenic insect-resistant three-line hybrid cotto-CCRI 83. China Cotton, 2012, 7: 39. (in Chinese)
[71]   刘记. 棉花新型光敏不育系的育性特征及其花药蛋白质组学分析[D]. 杨凌: 西北农林科技大学, 2015.
Liu J. Fertility characterization and anther proteomic analysis of a novel photosensitive male sterile mutant in cotton (Gossypium hirsutum L.) [D]. Yangling: Northwest A&F University, 2015. (in Chinese)
[72]   Zhang T Z, Qian N, Zhu X F, Chen H, Wang S, Mei H X, Zhang Y M. Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in China. Plos One, 2013, 8: e57220.
[73]   郭三堆, 崔洪志, 夏兰芹, 武东亮, 倪万潮, 张震林, 张保龙, 徐英俊. 双价抗虫转基因棉花研究. 中国农业科学, 1999, 32(3): 1-7.
Guo S T, Cui H Z, Xia L Q, Wu D L, NI W C, Zhang Z L, Zhang B L, Xu Y J. Development of bivalent insect-resistant transgenic cotton plants. Scientia Agricultura Sinica, 1999, 32(3): 1-7. (in Chinese)
[74]   Sun F, Liu C L, Zhang C J, Qi W W, Zhang X Y, Wu Z X, Kong D P, Wang Q H, Shang H H, Qian X Y. A conserved RNA recognition motif (RRM) domain of Brassica napus FCA improves cotton fiber quality and yield by regulating cell size. Molecular Breeding, 2012, 30(1): 93-101.
[75]   Zhang M, Zheng X L, Song S Q, Zeng Q W, Hou L, Li D M, Zhao J, Wei Y, Li X B, Luo M. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nature Biotechnology, 2011, 29(5): 453-458.
[76]   Wang K B, Wang Z, Li F G, Ye W W, Wang J, Song G L, Yue Z, Cong L, Shang H H, Zhu S, Zou C S, Li Q, Yuan Y L, Lu C R, Wei H L, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics, 2012, 44(10): 1098-1103.
[77]   Paterson A H, Wendel J F, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker K C, Shu S, Udall J, Yoo M J, Byers R, Chen W, Doron-Faigenboim A, Duke M V, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee T H, Li J, Lin L, Liu T, Marler B S, Page J T, Roberts A W, Romanel E, Sanders W S, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers J E, Brubaker C L, Chee P W, Das S, Gingle A R, Haigler C H, Harker D, Hoffmann L V, Hovav R, Jones D C, Lemke C, Mansoor S, ur Rahman M, Rainville L N, Rambani A, Reddy U K, Rong J K, Saranga Y, Scheffler B E, Scheffler J A, Stelly D M, Triplett B A, Van Deynze A, Vaslin M F, Waghmare V N, Walford S A, Wright R J, Zaki E A, Zhang T, Dennis E S, Mayer K F, Peterson D G, Rokhsar D S, Wang X, Schmutz J. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492(7429): 423-427.
[78]   Li F G, Fan G Y, Wang K B, Sun F M, Yuan Y L, Song G L, Li Q, Ma Z Y, Lu C R, Zou C S, Chen W B, Liang X M, Shang H H, Liu W Q, Shi C C, Xiao G H, Gou C Y, Ye W W, Xu X, Zhang X Y, Wei H L, Li Z F, Zhang G Y, Wang J Y, Liu K, Kohel R J, Percy R G,Yu J Z, Zhu Y X, Yu S X. Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 2014, 46(6): 567-572.
[79]   Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Cui J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 2015, 33(5): 524-530.
[80]   Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, Zhang W P, Song Q X, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L , Guo W Z, Li R Q, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33(5): 531-537.
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[4] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[5] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[6] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[7] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[8] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[9] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[10] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[11] LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations [J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
[12] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[13] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[14] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[15] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!