Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (15): 3169-3176.doi: 10.3864/j.issn.0578-1752.2011.15.012

• HORTICULTURE • Previous Articles     Next Articles

Genetic Analysis of Gynoecious in Cucumber(Cucumis sativus L.)

LI  Jian-Mei, QIN  Zhi-Wei, ZHOU  Xiu-Yan, XIN  Ming, WU  Tao   

  1. 1. 东北农业大学园艺学院
  • Received:2010-12-29 Revised:2011-03-27 Online:2011-08-01 Published:2011-04-12

Abstract: 【Objective】 The objective of this experiment was to analyze the genetic effects of gynoecious in cucumber in order to provide a theoretical basis of gynoecious and new varieties breeding. 【Method】 Gynoecious (D0401, D0420), subandroecious (D06103, D0819) and monoecious (HL-3) were used as test materials using Griffing Ⅳ1/2P (P-1) to build a hybrid combination. One was selected (D0420×D06103) to construct 6 generation groups, such as P1, P2, F1, F2, B1, B2. According to the investigations and statistics of the proportion of female flowers of individual plants within 25 knots, quantitative traits additive-dominant (A-D) models were used to analyze the female genetic regularity of cucumber in different seasons (spring, autumn), such as P1, P2, F1, F2, B1, B2. 【Result】The gynoecious in cucumber genetic consistent with the A-D genetic model. The addition variance and dominant-environmental variance were 51.05% and 19.66%, respectively. The dominant variance and addition-environmental variance were 0, narrow heritability, broad heritability was 51.05%, environmental-narrow heritability was 0, and the environmental-broad heritability was 19.65%. 【Conclusion】The gynoecious in cucumber is mainly a quantitative trait controlled by multiple genes; the proportion of female flowers is controlled by additive effect and conventional crossing breeding can be selected during the earlier generations. The environment (season) has a main effect on proportion of female flowers in cucumber.

Key words: cucumber, gynoecious, genetic analysis

[1]陶倩怡, 李  征, 何欢乐, 潘俊松, 蔡  润. 黄瓜单性花决定基因M的表达分析. 遗传, 2010, 32(6): 632-638.

Tao Q Y, Li Z, He H L, Pan J S, Cai R. Expression analysis of the unisex-determine gene M in cucumber. Hereditas, 2010, 32(6): 632-638. (in Chinese)

[2]梁永宏, 李广林, 郭  韬, 魏  强. 黄瓜性型分化的分子机制. 生命科学, 2010, 12(11): 1177-1182.

Liang Y H, Li G L, Guo T, Wei Q. The molecular mechanism of sexual differentiation in cucumber (Cucumis sativus L.). Chinese Bulletin of Life Sciences, 2010, 12(11): 1177-1182. (in Chinese)

[3]谭其猛. 蔬菜育种. 北京: 农业出版社, 1980.

Tan Q M. Vegetable Breeding. Beijing: Agricultural Press, 1980. (in Chinese)

[4]Perl-Treves R, Kahana A, Rosenmann N, Xiang Y, Silberstein L. Expression of multiple agamous-like genes in male and female flowers of cucumber (Cucumis sativus L. ). Plant and Cell Physiology, 1998, 39(7): 701-710.

[5]陈惠明. 黄瓜性别决定基因遗传规律、分子标记及应用[D]. 长沙: 湖南农业大学, 2005.

Chen H M. Genetic dissection of sex expression and studies on the distribution and molecular markers and application[D]. Changsha: Hunan Agricultural University, 2005. (in Chinese)

[6]李  征. 黄瓜M基因分子标记精细定位和图位克隆初探[D]. 沈阳: 沈阳农业大学, 2007.

Li Z. Fine mapping of the M gene and initial research in positive cloning in cucumber (Cucumis sativus L.)[D]. Shenyang: Shenyang Agricultural University, 2007. (in Chinese)

[7]邹晓艳. 黄瓜性型遗传规律及性别决定相关基因的分布和表达研究[D]. 北京: 北京中国农业科学院, 2007.

Zou X Y. Genetic dissection of sex expression and studies on the distribution and expression of genes related to sex determination in cucumber(Cucumis sativus L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2007. (in Chinese)

[8]Yamasaki S, Fujii N, Matsuura S, Mizusawa H, Takahashi H. The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant and Cell Physiology, 2001, 42(6): 608-619.

[9]时秋香. 黄瓜性别决定基因M与强雌性基因QTL定位[D]. 山东泰安: 山东农业大学, 2009.

Shi Q X. Mapping of the sex-determining M gene and QTL mapping for MOA-subgynoecious in cucumber[D]. Taian, Shandong: Shandong Agricultural University, 2009. (in Chinese)

[10]Li Z, Liu S Q, Pan J S, Zhang Z H, Tao Q Y, Shi Q X, Jia Z Q, Zhang W W, Chen H M, Si L T, Zhu L H, Huang S W, Cai R. Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics, 2009, 182(4): 1381-1385.

[11]Boualem A, Troadec C, Kovalski I, Sari M A, Perl-Treves R, Bendahmane A. A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. Public Library of Science ONE, 2009, 4(7): e6144.

[12]陈惠明, 卢向阳, 刘晓虹, 易  克, 许  亮, 田  云, 许  勇. 两个新发现的黄瓜性别决定基因遗传规律的研究. 园艺学报, 2005, 32(5): 895-898.

Chen H M, Lu X Y, Liu X H, Yi K, Xu L, Tian Y, Xu Y. Two sex determining genes and their inheritance in cucumber. Acta Horticulturae Sinica, 2005, 32(5): 895-898. (in Chinese)

[13]娄群峰, 陈劲枫, Molly Jahn, 陈龙正, 耿  红, 罗向东. 黄瓜全雌性基因连锁的AFLP和SCAR分子标记. 园艺学报, 2005, 32(2): 256-261.

Lou Q F, Chen J F, Jahn M, Chen L Z, Geng H, Luo X D. Identification of AFLP and SCAR molecular markers linked togynoecious loci in Cucumis sativus L. Acta Horticulturae Sinica, 2005, 32(2): 256-261. (in Chinese)

[14]李锡香, 朱德蔚. 黄瓜种质资源描述规范和数据标准. 北京: 中国农业出社, 2005: 20-21.

Li X X, Zhu D W. Germplasm Resource Description Norms and Data Standard in Cucumber (Cucumis sativus L.). Beijing: China Agriculture Press, 2005: 20-21. (in Chinese)

[15]朱  军, 季道藩, 许馥华. 作物品种间杂种优势遗传分析的新方法. 遗传学报, 1993, 20(3): 262-271.

Zhu J, Ji D P, Xu F H. The new method of genetic analysis of heterosis between crop varieties. Hereditas Sinica, 1993, 20(3): 262-271. (in Chinese)

[16]朱  军. 遗传模型分析方法. 北京: 中国农业出版社, 1997. 

Zhu J. Analysis Methods for Genetic Models. Beijing: Chinese Agricultural Press, 1997. (in Chinese)

[17]张秦英, 刘军伟, 刘  莉, 焦定量, 郭富常, 郭  敏. 西瓜强雌性性状的遗传分析及分子标记研究. 华北农学报, 2009, 24(1): 138-142.

Zhang Q Y, Liu J W, Liu L, Jiao D L, Guo F C, Guo M. Inheritance analysis and molecularmarker of the subgynoecious trait in watermelon. Acta Agriculturae Boreali-Sinica, 2009, 24(1): 138-142. (in Chinese)

[18]梁文科, 张世煌, 戚廷香, 邱法展, 庹洪章, 刘永忠, 郑用琏, 徐尚忠. 热带温带玉米群体产量性状遗传力及遗传方差分量的剖析. 中国农业科学, 2006, 39(11): 2178-2185.

Liang W K, Zhang S H, Qi T X, Qiu F Z, Tuo H Z, Liu Y Z, Zheng Y L, Xu S Z. Dissection of heritability and genetic variance components for yieldtraits in tropical and temperate maize populations. Scientia Agricultura Sinica, 2006, 39(11): 2178-2185. (in Chinese)

[19]栾明宝, 郭香墨, 张永山, 姚金波. 16个陆地棉染色体置换系产量与纤维品质性状遗传效应的初步分析. 中国农业科学, 2008, 41(11): 3503-3510.

Luan M B, Guo X M, Zhang Y S, Yao J B. A preliminary analysis of genetic effect on yield and fiber quality traits of 16 chromosome substitution lines in upland cotton. Scientia Agricultura Sinica, 2008, 41(11): 3503-3510. (in Chinese)

[20]冯鸿杰, 王  杰, 孙君灵, 张新宇, 贾银华, 孙  杰, 杜雄明. 陆地棉棕色纤维色泽的遗传效应. 作物学报, 2010, 36(6): 961-967.

Feng H J, Wang J, Sun J L, Zhang X Y, Jia Y H, Sun J, Du X M. Genetic effects of fiber color in brown cotton (Gossypium hirsutum L. ). Acta Agronomica Sinica, 2010, 36(6): 961-967. (in Chinese)

[21]梁康迳, 林文雄, 陈志雄, 李亚娟, 梁义元, 郭玉春, 何华勤, 陈芳育. 不同环境下水稻谷粒重的发育遗传分析. 中国农业科学, 2003, 36(10): 1113-1119.

Liang K J, Lin W X, Chen Z X, Li Y J, Liang Y Y, Guo Y C, He H Q, Chen Y F. Developmental genetic analysis of grain weight under different environment conditions in rice (Oryza sativa L). Scientia Agricultura Sinica, 2003, 36(10): 1113-1119. (in Chinese)

[22]王健升, 刘伟华, 王  辉, 武  军, 杨欣明, 李秀全, 高爱民, 李立会. 小麦-冰草衍生系3228主要产量性状的遗传分析. 中国遗传资源学报, 2010, 11(2): 147-151.

Wang J S, Liu W H, Wang H, Wu J, Yang X M, Li X Q, Gao A M,  Li L H. The Genetic analysis on main yield traits of the novel wheat-Agropyron cristatum derivative 3228. Journal of Plant Genetic

 

Resources, 2010, 11(2): 147-151. (in Chinese)

[23]Hao Y J, Wang D H, Peng Y B, Bai S L, Xu L Y, Li Y Q, Xu Z H, Xu Z H, Bai S N. DNA damage in early primordial anther is closely correlated with the stamen arrest in female flower of cucumber (Cucumis sativus L. ). Planta, 2003, 217(6): 888-895.

[24]Bai S L, Peng Y B, Cui J X, Gu H T, Xu L Y, Li Y Q, Xu Z H, Bai S  N. Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L). Planta, 2004, 220(2): 230-240.

[25]Wang D H, Li F, Duan Q H, Han T, Xu Z H, Bai S N. Ethylene perception is involved in female cucumber flower development. The Plant Journal, 2010, 61(5): 862-872.

[26]Wu T, Qin Z W, Zhou X Y, Feng Z, Du Y L. Transcriptome profile analysis of floral sex determination in cucumber. Journal of Plant Physiology,  2010, 167(11): 905-913.

[27]中国农业科学院蔬菜研究所. 蔬菜译丛. 北京: 农业出版社, 1982: 39-42.

Institute of Vegetables, Chinese Academy of Agricultural Sciences. Vegetable Translations. Beijing: Agriculture Press, 1982: 39-42. (in Chinese)

[28]Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353 (5): 31-37.

[29]Liu Z, Mara C. Regulatory mechanisms for floral homeotic gene expression. Seminars in Cell and Developmental Biology, 2010, 21(1): 80-86.

[30]Atchle W R, Zhu J. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics, 1997, 147: 765-776.

[31]黑龙江省统计局, 国家统计局黑龙江调查总队. 黑龙江统计年鉴-2010. 北京: 中国统计出版社, 2010.

Heilongjiang Provincal Bureau of Statistics, Survey team of National Bureau of Statistics in Heilongjiang Province. Heilongjiang Statistical Yearbook-2010. Beijing: China Statistics Press, 2010. (in Chinese)

[32]Sun J J, Li F, Li X, Liu X C, Rao G Y, Luo J C, Wang D H, Xu Z H, Bai S N. Why is ethylene involved in selective promotion of female flower development in cucumber? Plant Signaling and Behavior, 2010, 5(8): 1-5.
[1] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[2] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[3] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[4] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[5] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[6] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
[7] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[8] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[9] ZHOU Qi,LIU XiaoPing,BO KaiLiang,MIAO Han,DONG ShaoYun,GU XingFang,ZHANG ShengPing. Cloning and Analysis of Folate Synthesis Key Genes in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(18): 3764-3776.
[10] DUAN YouHou,LU Feng. Genetic Analysis on Growth Period and Plant Height Traits of Early-maturing Dwarf Sorghum Male-Sterile Line P03A [J]. Scientia Agricultura Sinica, 2020, 53(14): 2828-2839.
[11] HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132.
[12] Jian PAN,HaiFan WEN,HuanLe HE,HongLi LIAN,Gang WANG,JunSong PAN,Run CAI. Genome-Wide Identification of Cucumber ERF Gene Family and Expression Analysis in Female Bud Differentiation [J]. Scientia Agricultura Sinica, 2020, 53(1): 133-147.
[13] WeiYuan SONG,Yu HOU,JianYu ZHAO,XiaoFeng LIU,XiaoLan ZHANG. Cloning and Functional Analysis of CsRPL1/2 in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(1): 148-159.
[14] ZhiHong NIU,XiaoFei SONG,XiaoLi LI,XiaoYu GUO,ShuQiang HE,LuanJingZhi HE,ZhiHong FENG,ChengZhen SUN,LiYing YAN. Inheritance and QTL Mapping for Parthenocarpy in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(1): 160-171.
[15] Fei QI,Shu LIN,MengFei SONG,MengRu ZHANG,ShuYan CHEN,NaiXin ZHANG,JinFeng CHEN,QunFeng LOU. Screening and Identification of Cucumber Mutant Resistant to Powdery Mildew [J]. Scientia Agricultura Sinica, 2020, 53(1): 172-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!