Scientia Agricultura Sinica ›› 2010, Vol. 43 ›› Issue (2): 286-292 .doi: 10.3864/j.issn.0578-1752.2010.02.008

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Evaluation of Waterlogging Tolerance in Rapeseed (Brassica napus L.) DH Lines at Seedling Stage

LI Zhen, PU Yuan-yuan, GAO Chang-bin, ZHOU Guang-sheng, TU Jin-xing, FU Ting-dong

  

  1. (华中农业大学植物科学技术学院)
  • Received:2009-05-05 Revised:2009-06-16 Online:2010-01-20 Published:2010-01-20
  • Contact: ZHOU Guang-sheng

Abstract:

【Objective】 The objective of the study was to evaluate waterlogging tolerance of the rapeseed (Brassica napus L.) doubled haploid (DH) population and to screen the most waterlogging-tolerant and waterlogging-sensitive DH lines. 【Method】 For phenotyping, the rapeseed seedlings were grown in plastic pots. Six traits (plant height, root length, shoot dry weight, root dry weight, root/shoot ratio and total dry weight) together with WTC (waterlogging tolerance coefficient) of all the traits were investigated and analyzed. The waterlogging tolerance of the 118 DH lines and their parents were evaluated. 【Result】 The results showed that: the six responsive traits changed significantly under the waterlogging conditions compared with the control in the experiment and the effects of waterlogging were much more severe on RDW than other traits. All of the six traits and WTC of all the traits showed transgressive and continuous distribution under both waterlogging and control conditions. The correlation among all the traits investigated in the study indicated that WTC of SDW, RDW and TDW could be used as available evaluation indices for waterlogging tolerance. 【Conclusion】 Lines 005, 007, and 040 screened from the population are the most waterlogging-tolerant lines and 086, 110, and 119 are the most waterlogging-sensitive lines.

Key words: Brassica napus, seedling stage, waterlogging tolerance, evaluation index

[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[3] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[4] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[5] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[6] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[7] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[8] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[9] CAO XiaoDong,LIU ZiGang,MI WenBo,XU ChunMei,ZOU Ya,XU MingXia,ZHENG GuoQiang,FANG XinLing,CUI XiaoRu,DONG XiaoYun,MI Chao,CHEN QiXian. Analysis on the Adaptability of Northward Planting of Brassica napus [J]. Scientia Agricultura Sinica, 2020, 53(20): 4164-4176.
[10] WAN HuaFang,WEI Shuai,FENG YuXia,QIAN Wei. Creating a New-Type Brassica napus (AnArCnCo) with High Drought-resistance Employing Hexaploid (AnAnCnCnCoCo) as a Bridge [J]. Scientia Agricultura Sinica, 2020, 53(16): 3225-3234.
[11] WAN HuaFang,DING YiJuan,CHEN ZhiFu,MEI JiaQin,QIAN Wei. Improvement of the Resistance Against Sclerotinia sclerotiorum in Ogu CMS Restorer in Brassica napus Using Wild B. oleracea as Donor [J]. Scientia Agricultura Sinica, 2020, 53(10): 1950-1958.
[12] YANG GuangSheng,XIN Qiang,DONG FaMing,HONG DengFeng. A Simplified Production Method of Hybrid F1 Seeds in Rapeseed [J]. Scientia Agricultura Sinica, 2019, 52(8): 1334-1340.
[13] ZHOU QingYuan, WANG Qian, YE Sang, CUI MinSheng, LEI Wei, GAO HuanHuan, ZHAO YuFeng, XU XinFu, TANG ZhangLin, LI JiaNa, CUI Cui. Genome-Wide Association Analysis of Tribenuron-Methyl Tolerance Related Traits in Brassica napus L. Under Germination [J]. Scientia Agricultura Sinica, 2019, 52(3): 399-413.
[14] YE Sang,CUI Cui,GAO HuanHuan,LEI Wei,WANG LiuYan,WANG RuiLi,CHEN LiuYi,QU CunMin,TANG ZhangLin,LI JiaNa,ZHOU QingYuan. QTL Identification for Fatty Acid Content in Brassica napus Using the High Density SNP Genetic Map [J]. Scientia Agricultura Sinica, 2019, 52(21): 3733-3747.
[15] PU YuanYuan,ZHAO YuHong,WU JunYan,LIU LiJun,BAI Jing,MA Li,NIU ZaoXia,JIN JiaoJiao,FANG Yan,LI XueCai,SUN WanCang. Comprehensive Assessment on Cold Tolerance of the Strong Winter Brassica napus L. Cultivated in Northern China [J]. Scientia Agricultura Sinica, 2019, 52(19): 3291-3308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!