Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (3): 399-413.doi: 10.3864/j.issn.0578-1752.2019.03.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Analysis of Tribenuron-Methyl Tolerance Related Traits in Brassica napus L. Under Germination

ZHOU QingYuan,WANG Qian,YE Sang,CUI MinSheng,LEI Wei,GAO HuanHuan,ZHAO YuFeng,XU XinFu,TANG ZhangLin,LI JiaNa,CUI Cui()   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400716
  • Received:2018-09-17 Accepted:2018-11-17 Online:2019-02-01 Published:2019-02-14

Abstract:

【Objective】 To investigate the effect of residual tribenuron-methyl in soil on seed germination, genome-wide association analysis (GWAS) of 52157 SNPs with genome-wide coverage was used to identify the candidate genes for the germinating traits of rapeseed under tribenuron-methyl stress. The results of this study may provide a theoretical basis for tribenuron-methyl tolerance in oilseed rape.【Method】 In the germination experiment, 241 rape varieties (lines) were treated with tribenuron-methyl solution of 25 mg·L -1, and distilled water was added to the control. At the 7th day of germination, the phenotypic data including relative germination rate, relative root length and relative fresh weight were measured and calculated. Using the TASSEL software, tribenuron-methyl tolerance related traits were explored in B. napus under germination with a 60K Brassica Illumina ? Infinium SNP array. Then, the structure of the population was analyzed by the software STRUCTURE, and the genetic relationship and LD attenuation were analyzed by the software TASSEL, respectively. In order to determine the optimal model for GWAS analysis of each trait, 6 models involved the general linear model and mixed linear model were used to analyze and compare the effects of group structure and relationship. The software TASSEL was employed to analyze the relative values of the 3 traits under the optimal model. Meanwhile, the candidate genes were predicted based on the LD interval sequence of the associated SNP locus. 【Result】 The population structure analysis showed the population could be divided into two subgroups, P1 with 94 materials and P2 with 147 materials. Meanwhile, the result of genetic relationship analysis showed that about 56.28% of the materials had no kinship relationship. In the optimal GWAS model (K+PCA), we found that 16 SNP loci significantly associated with 3 traits including relative root length, relative fresh weight and relative germination rate, and each locus explained phenotypic variations ranging from 9.42% to 13.14%. By analyzing the LD interval of the significant SNP locus and the corresponding interval sequence of Brassica napus, twenty-five candidate genes related to tribenuron-methyl tolerance were screened out in the LD interval of these significant SNP loci, in which nine of them belonged to cytochrome P450 gene families, five were involved in glutathione synthesis or metabolic processes, and two were multidrug-tolerance associated protein. At the same time, it was revealed that the gene ATGSTU19 significantly related to germination rate encodes glutathione transferase, which participates in the process of toxin decomposition and plays an important role in various stress responses. In addition, BnaC02g27690D was identified at relative root length and relative fresh weight. However, its function was not clear. 【Conclusion】 In this study, 16 SNP loci were detected to be significantly associated with tribenuron-methyl tolerance, and 25 candidate genes were screened out.

Key words: Brassica napus L., germination, tribenuron-methyl tolerance, GWAS

Table 1

Phenotypic Statistics of Tolerance Related Traits of Tribenuron-methyl stress"

性状 Traits 均值±标准差 Mean±SD 变幅 Change amplitude 变异系数 CV (%)
相对根长Relative root length 0.136±0.066** 0.050-0.588 48.950
相对鲜重Relatively fresh weight 0.980±0.202** 0.411-2.357 20.593
相对发芽率Relative germination rate 0.942±0.097** 0.333-1.000 10.276

Fig. 1

Phenotype frequency distribution of 3 related traits"

Table 2

The number of SNP in each chromosome"

染色体
Chr.
SNP数目
No.
长度
Length
(bp)
SNP密度
SNP density
(1 SNP/kb)
染色体
Chr.
SNP数目
No.
长度
Length
(bp)
SNP密度
SNP density
(1 SNP/kb)
A01 1533 23213190 15.14 C01 2321 38751959 16.70
A02 1266 24751063 19.55 C02 2225 46171227 20.75
A03 2206 29727584 13.48 C03 2707 60554466 22.37
A04 1444 19097304 13.23 C04 3005 48891192 16.27
A05 1623 22986419 14.16 C05 1011 43165527 42.70
A06 1519 24371484 16.04 C06 1287 37161109 28.87
A07 1882 23921822 12.71 C07 1683 44305541 26.33
A08 1085 18658096 17.20 C08 1527 38226084 25.03
A09 1637 33803997 20.65 C09 1006 48440856 48.15
A10 1526 17348295 11.37
A染色体SNP
的平均分布
Mean A genome
1572 23787925 15.13 C染色体SNP
的平均分布
Mean C genome
1864 45074218 24.19

Fig. 2

32493 maps of SNP base types"

Fig. 3

Analysis of population structure and relative kinship in 241 B.napus A: Estimation of ?k value in population; B: Group structure diagram; C: Distribution of relative kinship values"

Table 3

The Linkage disequilibrium attenuation decline in A and C genome"

染色体
Chr.
A基因组LD衰减距离
A genome LD attenuation distance (kb)
染色体
Chr.
C基因组LD衰减距离
C genome LD attenuation distance (kb)
A01 150 C01 750
A02 130 C02 1150
A03 130 C03 370
A04 150 C04 560
A05 150 C05 270
A06 150 C06 370
A07 140 C07 350
A08 550 C08 640
A09 370 C09 760
A10 240
A基因组 A genome 170 C基因组 C genome 650

Fig. 4

The linkage disequilibrium decline in different chromosomes for A and C genome A: LD decline A genome; B: LD decline C genome"

Fig. 5

Quantile-quantile plots of estimated -log10(P) from association analysis using six models in related traits with tribenuron-methyl A: Relative root length; B: Relative fresh weight; C: Relative germination rate"

Table 4

Significant correlation markers of related traits under tribenuron-methyl stress"

性状
Trait
标记
Marker
等位基因
Allele
染色体
Chr.
位置
Position (bp)
阈值
P-value
贡献率
R2(%)
相对根长
Relative root length
Bn-A03-p21744993 A/G A03 20527711 4.37×10-6 12.19
Bn-A05-p23188406 A/C A05 21346681 1.18×10-5 11.22
Bn-A02-p5442618 A/G C02 5190991 4.35×10-6 12.20
Bn-A05-p9277011 A/C C02 26364667 2.94×10-5 10.35
Bn-scaff_18322_1-p2518158 T/C C03 6708755 4.26×10-6 12.22
Bn-scaff_17799_1-p1082380 A/G C06 35520328 9.75×10-6 11.42
相对鲜重
Relative fresh weight
Bn-A01-p11163980 A/G A01 9233493 1.48×10-5 11.12
Bn-scaff_22749_1-p462527 T/C C02 25111534 8.44×10-6 11.66
Bn-scaff_17457_1-p187316 A/G C03 54357603 1.34×10-5 11.22
Bn-scaff_17457_1-p82664 T/G C03 54463472 2.31×10-5 10.69
Bn-scaff_15798_1-p152131 T/G C04 36758548 2.28×10-5 9.42
Bn-scaff_15794_3-p286350 A/C C03 55318298 3.12×10-5 10.40
相对发芽率
Relative germination rate
Bn-A04-p10628643 T/C A04 11766577 1.88×10-6 13.14
Bn-A07-p5710530 T/G A07 7686960 2.52×10-6 12.85
Bn-scaff_16300_1-p1228965 A/C C02 22565646 1.75×10-5 10.95
Bn-A09-p9040117 A/C C09 11435455 1.28×10-5 11.26

Fig. 6

The manhattan graph of tolerance related traits A: Relative root length; B: Relative fresh weight; C: Relative germination rate"

Table 5

A summary of candidate genes associated with tribenuron-methyl related traits"

性状
Trait
标记
Marker
染色体
Chr.
LD区间
LD interval (bp)
候选基因
Candidate gene
拟南芥基因
Arabidopsis gene
基因
Gene
参考文献
Reference
相对根长
Relative root
length
Bn-A03-p21744993 A03 20397711-20657711 BnaA03g40900D AT3G50740 UGT72E1 [33]
Bn-A05-p23188406 A05 21196681-21496681 BnaA05g30790D AT3G06590 AIF2 [34]
Bn-A02-p5442618 C02 4040991-6340991 BnaC02g07650D AT5G17960 未知Unknown
BnaC02g08720D AT5G19450 CDPK19 [35]
BnaC02g10110D AT1G01190 CYP78A8 [36]
BnaC02g10430D AT5G58860 CYP86A1 [37]
Bn-A05-p9277011 C02 25214667-27514667 BnaC02g27690D AT4G01210 未知Unknown
BnaC02g28290D AT4G12320 CYP706A6
Bn-scaff_17799_
1-p1082380
C06 35150328-35890328 BnaC06g38000D AT1G77290 未知Unknown
相对鲜重
Relative fresh weight
Bn-A01-p11163980 A01 9083493-9383493 BnaA01g17570D AT4G16190 未知Unknown
Bn-scaff_22749
_1-p462527
C02 23961534-26261534 BnaC02g27690D AT4G01210 未知Unknown
BnaC02g27750D AT4G01070 GT72B1 [38]
Bn-scaff_17457
_1-p187316
C03 53987603-54727603 BnaC03g64930D AT4G12560 CPR1 [39]
BnaC03g65100D AT4G22690 CYP706A1 [40]
BnaC03g65140D AT4G23100 GSH1 [41]
Bn-scaff_17457
_1-p82664
C03 54093472-54833472 BnaC03g65260D AT1G49860 GSTF14 [42]
Bn-scaff_15798
_1-p152131
C04 36198548-37318548 BnaC04g35220D AT1G13080 CYP71B2 [43]
BnaC04g35620D AT1G78490 CYP708A3
相对发芽率
Relative germination rate
Bn-A07-p5710530 A07 7546960-7826960 BnaA07g07310D AT1G30410 ATMRP13 [41]
BnaA07g07330D AT1G30420 ATMRP12 [44]
Bn-scaff_16300
_1-p1228965
C02 21415646-23715646 BnaC02g24410D AT1G47620 CYP96A8 [45]
BnaC02g24920D AT1G78270 UGT85A4 [46]
BnaC02g24980D AT1G78380 ATGSTU19 [47]
Bn-A09-p9040117 C09 10675455-12195455 BnaC09g14070D AT3G26160 CYP71B17 [48]
BnaC09g14150D AT3G26170 CYP71B19 [49]
BnaC09g15080D AT1G59700 GSTU16 [50]
[1] AND B J M, FALCO S C . The development of herbicide resistant crops. Annual Review of Plant Physiology and Plant Molecular Biology, 2003,40(1):441-470.
doi: 10.1146/annurev.pp.40.060189.002301
[2] TRANEL P J, WRIGHT T R . Resistance of weeds to ALS-inhibiting herbicides: What have we learned? Weed Science, 2002,50(6):700-712.
doi: 10.1614/0043-1745(2002)050[0700:RROWTA]2.0.CO;2
[3] DIXON F L, CLAY D V . Effect of herbicides applied pre- and post-emergence on forestry weeds grown from seed. Crop Protection, 2004,23(8):713-721.
doi: 10.1016/j.cropro.2003.12.003
[4] 王正贵 . 除草剂对小麦产量和品质的影响及其残留特性[D]. 扬州: 扬州大学, 2011.
WANG Z G . Effects of herbicides on grain yield and quality in wheat and relevant residual behavior[D]. Yangzhou: Yangzhou University, 2011. ( in Chinese)
[5] 杜慧平, 杜慧玲 . 苯磺隆在土壤中的消解动态和残留测定. 山西农业科学, 2015(1):50-53.
DU H P, DU H L . Tribenuron-methly degradation dynamics and residual in soil. Journal of Shanxi Agricultural Sciences, 2015(1):50-53. (in Chinese)
[6] 单正军, 陈祖义 . 除草剂对非靶植物(农作物)的危害影响及控制技术.农药科学与管理, 2007(9):50-54.
SHAN Z J, CHEN Z Y . Harm and control technology of herbicides to non target plants (crops).Pesticide Science and Administration, 2007(9):50-54. (in Chinese)
[7] 唐建明, 王勇, 方雅琴 . 油菜田常用除草剂药害及规避措施. 杂草学报, 2010(1):64-66.
TANG J M, WANG Y, FANG Y Q . Herbicide phytotoxicity and evasion measures in rape fields.Journal of Weeds, 2010(1):64-66. (in Chinese)
[8] 孙妍妍, 曲高平, 黄谦心, 吕金洋, 郭媛, 胡胜武 . 甘蓝型油菜抗苯磺隆突变体ALS基因分析与SNP标记. 中国油料作物学报, 2015,37(5):589-595.
SUN Y Y, QU G P, HUANG Q X, LV J Y, GUO Y, HU S W . SNP markers for acetolactate synthase genes from tribenuron -methyl resistant mutants in Brassica napus L. Chinese Journal of Oil Crop Sciences, 2015,37(5):589-595. (in Chinese)
[9] 李忠爱, 陈欣, 王子成 . 氯化镍对拟南芥生长发育和生理生化指标的影响. 农业科技与信息, 2014(24):44-48.
LI Z A, CHEN X, WANG Z C . The effects of nickel chloride (NiCl2) on growth, development and physiology inArabidopsis thaliana. Agricultural Science-Technology and Information, 2014(24):44-48. (in Chinese)
[10] 王倩, 崔翠, 叶桑, 崔明圣, 赵愉风, 林呐, 唐章林, 李加纳, 周清元 . 甘蓝型油菜种子萌发期耐苯磺隆种质筛选与综合评价. 作物学报, 2018,44(8):1169-1184.
WANG Q, CUI C, YE S, CUI M S, ZHAO Y F, LIN N, TANG Z L, LI J N, ZHOU Q Y . Screening and comprehensive evaluation of germplasm resources with tribenuron-methyl tolerance at germination stage in rapeseed (Brassica napus L.). Acta Agronomica Sinica, 2018,44(8):1169-1184. (in Chinese)
[11] HU G H, LI Z, LU Y C, LI C X, GONG S C, YAN S Q, LI G L, WANG M Q, REN H L, GUAN H T, ZHANG Z W, QIN D L, CHAI M Z, YU J P, LI Y, YANG D G, WANG T Y, ZHANG Z W . Genome-wide association study identified multiple genetic loci on chilling resistance during germination in maize. Scientific Reports, 2017,7(1):10840.
doi: 10.1038/s41598-017-11318-6 pmid: 28883611
[12] LI D H, DOSSA KOMIVI, ZHANG Y X, WEI X, WANG L X, ZHANG Y J, LIU A L, ZHOU R, ZHANG X R . GWAS uncovers differential genetic bases for drought and salt tolerances in sesame at the germination stage. Genes, 2018,9(2):87.
doi: 10.3390/genes9020087 pmid: 29443881
[13] SNOWDON R J ,INIGUEZ LUY F L . Potential to improve oilseed rape and canola breeding in the genomics era. Plant Breeding, 2012,131(3):351-360.
doi: 10.1111/j.1439-0523.2012.01976.x
[14] CHEN L L, WAN H P, QIAN J L, GUO J B, SUN C M, WEN J, YI B, MA C Z, TU J X, SONG L Q, FU T D, SHEN J X . Genome-wide association study of cadmium accumulation at the seedling stage in rapeseed (Brassica napus L.). Frontiers in Plant Science, 2018,9:375-390.
doi: 10.3389/fpls.2018.00375
[15] WAN H P, CHEN L L, GUO J B, LI Q, WEN J, YI B, MA C Z, TU J X, FU T D, SHEN J X . Genome-wide association study reveals the genetic architecture underlying salt tolerance- related traits in rapeseed (Brassica napus L.). Frontiers in Plant Science, 2017,8:593-608.
doi: 10.3389/fpls.2017.00593 pmid: 28491067
[16] WEI L J, JIAN H J, LU K, FILARDO F, YIN N W, LIU L Z, QU C M, LI W, DU H, LI J N . Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnology Journal, 2016,14(6):1368.
doi: 10.1111/pbi.12501 pmid: 26563848
[17] HATZIG S V, FRISCH M, BREUER F, NESI N, DUCOURNAU S, WAGNER M H, LECKBAND G, ABBADI A, SNOWDON R J . Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Frontiers in Plant Science, 2015,6(221):221.
doi: 10.3389/fpls.2015.00221 pmid: 4391041
[18] LIU S, FAN C, LI J, CAI G, YANG Q, WU J, YI X, ZHANG C, ZHOU Y . A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theoretical & Applied Genetics, 2016,129(6):1203-1215.
doi: 10.1007/s00122-016-2697-z pmid: 26912143
[19] XU L, HU K, ZHANG Z, GUAN C, CHEN S, HUA W, LI J, WEN J, YI B, SHEN J, MA C, TU J, FU T . Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Research an International Journal for Rapid Publication of Reports on Genes & Genomes, 2016,23(1):43.
doi: 10.1093/dnares/dsv035
[20] 陈东亮, 崔翠, 任义英, 王倩, 李加纳, 唐章林, 周清元 . 草铵膦胁迫下油菜苗期叶片药害相关性状的全基因组关联分析. 作物学报, 2018,44(4):542-553.
CHEN D L, CUI C, REN Y Y, WANG Q, LI J N, TANG Z L, ZHOU Q Y . Genome-wide association analysis of some phytotoxicity related traits at seedling stage in rapeseed. Acta Agronomica Sinica, 2018,44(4):542-553. (in Chinese)
[21] ZHANG L, LU Q, CHEN H G, PAN G, XIAO S S, DAI Y T, LI Q, ZHANG J W, WU X Z, WU J S, TU H M, LIU K D . Identification of a cytochrome P450 hydroxylase, CYP81A6, as the candidate for the bentazon and sulfonylurea herbicide resistance gene, Bel, in rice. Molecular Breeding, 2007,19(1):59-68.
doi: 10.1007/s11032-006-9044-z
[22] 杨倩, 邓维, 梅宇, 司冲, 焦洪涛, 郑明奇 . RNA-seq分析抗苯磺隆播娘蒿代谢相关基因//第十二届全国杂草科学大会论文摘要集. 太原: 中囯植物保护学会杂草学分会, 2015.
YANG Q, DENG W, MEI Y, SI C, JIAO H T, ZHENG M Q . RNA-seq analysis of genes related to metabolism of tribenuron-methyl in Sisymbrium junceum Willd//Abstracts of the Twelfth National Conference on Weed Science. Taiyuan: Weed Science Society of China CSPP, 2015. ( in Chinese)
[23] YANG Q, DENG W, LI X, YU Q, BAI L, ZHENG M . Target-site and non-target-site based resistance to the herbicide tribenuron-methyl in flixweed (Descurainia sophia L.). BMC Genomics, 2016,17(1):551.
doi: 10.1186/s12864-016-2915-8 pmid: 27495977
[24] GAINES T A, FIGGE A, HERRMANN J, MAIWALD F, OTT M C, HAN H, BUSI R, YU Q, POWLES S B, BEFFA R . RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. The Plant Journal, 2014,78(5):865-876.
doi: 10.1111/tpj.12514 pmid: 24654891
[25] DONG B, QIAN W, HU J . Dissipation kinetics and residues of florasulam and tribenuron-methyl in wheat ecosystem. Chemosphere, 2015,120:486-491.
[26] 信晓阳, 曲高平, 张荣, 庞红喜, 吴强, 王发禄, 胡胜武 . 不同品种油菜对苯磺隆耐药性差异的鉴定. 西北农业学报, 2014,23(7):68-74.
XIN X Y, QU G P, ZHANG R, PANG H X, WU Q, WANG F L, HU S W . Identification of the tribenuron-methyl tolerance in different rapeseed genotypes. Acta Agriculturae Boreali-Occidentalis Sinica, 2014,23(7):68-74. (in Chinese)
[27] 曲高平, 孙妍妍, 庞红喜, 吴强, 王发禄, 胡胜武 . 甘蓝型油菜EMS突变体库构建及抗除草剂突变体筛选. 中国油料作物学报, 2014,36(1):25-31.
QU G P, SUN Y Y, PANG H X, WU Q, WANG F L, HU S W . Ems mutagenesis and als-inhibitor herbicide-resistant mutants of Brassica napus L. Chinese Journal of Oil Crop Sciences, 2014,36(1):25-31. (in Chinese)
[28] 汪亚琴 . 水稻抗除草剂基因CYP81A6转化油菜的研究[D]. 武汉: 华中农业大学, 2013.
WANG Y Q . The expression of rice herbicide resistance gene CYP81A6 in Brassica napus[D]. Wuhan: Huazhong Agricultural University, 2013.( in Chinese)
[29] YU J, PRESSOIR G, BRIGGS W H, VROH B I, YAMASAKI M, DOEVLEY J F, MCMULLEN M D, GAUT B S, NIELSEN D M, HOLLAND J B, KRESOVICH S, BUCKLER E S . A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 2006,38(2):203-208.
doi: 10.1038/ng1702 pmid: 16380716
[30] 任义英, 崔翠, 王倩, 唐章林, 徐新福, 林呐, 殷家明, 李加纳, 周清元 . 油菜主花序角果密度及其相关性状的全基因组关联分析. 中国农业科学, 2018,51(6):1020-1033.
REN Y Y, CUI C, WANG Q, TANG Z L, XU X F, LIN N, YIN J M, LI J N, ZHOU Q Y . Genome-wide association analysis of silique density on Racemes and its component traits in Brassica napus L. Scientia Agricultura Sinica, 2018,51(6):1020-1033. (in Chinese)
[31] 贺亚军, 吴道明, 游婧璨, 钱伟 . 油菜耐盐相关性状的全基因组关联分析及其候选基因预测. 中国农业科学, 2017,50(7):1189-1201.
HE Y J, WU D M, YOU J C, QIAN W . Genome-wide association analysis of salt tolerance related traits in Brassica napus and candidate gene prediction. Scientia Agricultura Sinica, 2017,50(7):1189-1201. (in Chinese)
[32] 王荣焕, 王天宇, 黎裕 . 植物基因组中的连锁不平衡. 遗传, 2007,29(11):1317-1323.
WANG R H, WANG T Y, LI Y . Linkage disequilibrium in plant genomes. Hereditas, 2007,29(11):1317-1323. (in Chinese)
[33] HOU B, LIM E K, HIGGINS G S, BOWLES D J . N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. Journal of Biological Chemistry, 2004,279(46):47822-47832.
[34] SUKWEENADHI J, KIM Y J, CHOI E S, KOH S C, LEE S W, KIM Y J, YANG D C . Paenibacillus yonginensis DCY84(T) induces changes in Arabidopsis thaliana gene expression against aluminum drought and Tribenuron stress.Microbiological Research, 2015,172:7-15.
[35] SHIKHA M, MALLANA G M, ATMAKURI R R, PRASHANT A J, PRASANTA K D, NEPOLEAN T . Comparative analysis of CDPK family in maize, Arabidopsis, rice, and sorghum revealed potential targets for drought tolerance improvement. Frontiers in Chemistry, 2017,5:115-132.
doi: 10.3389/fchem.2017.00115 pmid: 5742180
[36] TAKEI K, YAMAYA T, SAKAKIBARA H . Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. Journal of Biological Chemistry, 2004,279(40):41866-41872.
[37] KOSALA R, LUKAS S . Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. Journal of Experimental Botany, 2011,62(6):1961-1974.
doi: 10.1093/jxb/erq389 pmid: 3060681
[38] BRAZIER-HICKS M, GERSHATER M, DIXON D, EDWARDS R . Substrate specificity and safener inducibility of the plant UDP- glucose-dependent family 1 glycosyltransferase super-family. Plant Biotechnology Journal, 2017,16(1):337-348.
doi: 10.1111/pbi.12775 pmid: 28640934
[39] GOU M Y, SU N, ZHENG J, HUAI J L, WU G H, ZHAO J F, HE J G, TANG D Z, YANG S H, WANG G Y . An F-box gene,CPR30, functions as a negative regulator of the defense response in Arabidopsis. The Plant Journal, 2009,60(5):757-770.
doi: 10.1111/j.1365-313X.2009.03995.x pmid: 19682297
[40] EKMAN D R, WOLFE N L, DEAN J F . Gene expression changes in Arabidopsis thaliana seedling roots exposed to the munition hexahydro-1,3,5-trinitro-1,3,5-triazine. Environmental Science & Technology, 2005,39(16):6313-6320.
doi: 10.1021/es050385r pmid: 16173598
[41] PLANER-FRIEDRICH B , KÜHNLENZ T,HALDER D,LOHMAYER R,WILSON N,RAFFERTY C,CLEMENS S . Thioarsenate toxicity and tolerance in the model system Arabidopsis thaliana. Environmental Science & Technology, 2017,51(12):7187-7196.
[42] RENAULT H, AMRANI A E, BERGER A, MOUILLE G, SOUBIGOU- TACONNAT L, BOUCHEREAU A, DELEU C . γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during Tribenuron stress in Arabidopsis, roots. Plant Cell & Environment, 2013,36(5):1009-1018.
[43] MUELLER S, HILBERT B, DUECKERSHOFF K, ROITSCH T, KRISCHKE M, MUELLER M J, BERGER S . General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. The Plant Cell, 2008,20(3):768-785.
[44] KOLUKISAOGLU Ü, BOVET L, KLEIN M, EGGMANN T, GEISLER M, WANKE D, MARTINOIA E, SCHULZ B . Family business: The multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana. Planta, 2002,216(1):107-119.
doi: 10.1007/s00425-002-0890-6 pmid: 12430019
[45] WUEST S E, VIJVERBERG K, SCHMIDT A, WEISS M, GHEYSELINCK J, LOHR M, WELLMER F ,RAHNENFÜHRER J,VON MERING C,GROSSNIKLAUS U. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Current Biology, 2010,20(6):506-512.
doi: 10.1016/j.cub.2010.01.051 pmid: 20226671
[46] LOEFFLER C, BERGER S, GUY A, DURAND T, BRINGMANN G, DREYER M, VON RAD U, DURNER J, MUELLER M J . B1-phytoprostanes trigger plant defense and detoxification responses. Plant Physiology, 2005,137(1):328-340.
doi: 10.1104/pp.104.051714 pmid: 15618427
[47] XU J, TIAN Y S, XING X J, PENG R H, ZHU B, GAO J J, YAO Q H . Over-expression of AtGSTU19 provides tolerance to Tribenuron, drought and methyl viologen stresses in Arabidopsis. Physiologia Plantarum, 2015,156(2):164-175.
[48] RYBEL B D, ADIBI M, BREDA A S, WENDRICH J R, SMIT M E , NOVÁK O, YAMAGUCHI N, YOSHIDA S, VAN ISTERDAEL G, PALOVAARA J, NIJSSE B, BOEKSCHOTEN M V, HOOIVELD G, BEECKMAN T, WAGNER D, LJUNG K, FLECK C, WEIJERS D. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science, 2014,345(6197):1255215.
doi: 10.1126/science.1255215 pmid: 25104393
[49] CHRIST B , SÜSSENBACHER I, MOSER S, BICHSEL N, EGERT A, MÜLLER T, KRÄUTLER B, HÖRTENSTEINER S .Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis. The Plant Cell, 2013,25(5):1868-1880.
doi: 10.1105/tpc.113.112151 pmid: 23723324
[50] FUJITA M, FUJITA Y, MARUYAMA K, SEKI M, HIRATSU K, OHME-TAKAGI M, TRAN L S, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K . A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. The Plant Journal, 2004,39(6):863-876.
doi: 10.1111/j.1365-313X.2004.02171.x pmid: 15341629102
[51] 许贤 . 播娘蒿对苯磺隆抗性水平差异机理研究[D]. 北京: 中国农业大学, 2015.
XU X . The mechanism of tribenuron-resistant level difference of flixweeds[D]. Beijing: China Agricultural University, 2015. ( in Chinese)
[52] DOWSETT C, JAMES T K, RAHMAN A . Plant-back safety of fodder beet(Beta vulgaris) following the application of tribenuron- methyl. 2011,64:288.
[53] 张宝娟, 赵惠贤, 胡胜武 . 苯磺隆对甘蓝型油菜中双9号的杀雄效果. 中国油料作物学报, 2010,32(4):467-471.
ZHANG B J, ZHAO H X, HU S W . Male sterile-inducing ability of tribenuron-methyl to rapeseed cultivar Zhongshuang 9. Chinese Journal of Oil Crop Sciences, 2010,32(4):467-471. (in Chinese)
[54] 侯倩 . 重铬酸盐对两种作物的毒性效应研究[D]. 太原: 山西大学, 2012.
HOU Q . Study on toxic effects of dichromate on two crop species[D]. Taiyuan: Shanxi University, 2012. ( in Chinese)
[55] 胡华冉, 刘浩, 邓纲, 杜光辉, 徐云, 刘飞虎 . 不同盐碱胁迫对大麻种子萌发和幼苗生长的影响. 植物资源与环境学报, 2015,24(4):61-68.
HU H R, LIU H, DENG G, DU G H, XU Y, LIU F H . Effects of different salt-alkaline stresses on seed germination and seedling growth of Cannabis. Journal of Plant Resources and Environment, 2015,24(4):61-68. (in Chinese)
[56] YU Q, POWLES S . Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production. Plant Physiology, 2014,166(3):1106.
doi: 10.1104/pp.114.242750 pmid: 25106819
[57] DÉLYE C, MENCHARI Y, GUILLEMIN J P, MATÉJICEK A, MICHEL S, CAMILLERI C, CHAUVEL B . Status of black grass (Alopecurus myosuroides) resistance to acetyl-coenzyme A carboxylase inhibitors in France. Weed Research, 2010,47(2):95-105.
doi: 10.1111/j.1365-3180.2007.00544.x
[58] PLANER-FRIEDRICH B , KÜ T H, HALDER D, LOHMAYER R, WILSON N, RAFFERTY C, CLEMENS S . Thioarsenate toxicity and tolerance in the model system Arabidopsis thaliana. Environmental Science & Technology, 2017,51(12):7187-7196.
[59] SIMINSZKY B, CORBIN F T, WARD E R, FLEISCHMANN T J, DEWEY R E . Expression of a soybean cytochrome P450 monooxygenase cDNA in Yeast and tobacco enhances the metabolism of phenylurea herbicides. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(4):1750.
doi: 10.1073/pnas.96.4.1750 pmid: 9990096
[60] DIDIERJEAN L, GONDET L, PERKINS R, LAU S M, SCHALLER H , O'KEEFE D P,WERCK-REICHHART D . Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from jerusalem artichoke. Plant Physiology, 2002,130(1):179-189.
doi: 10.1104/pp.005801 pmid: 12226498
[61] XIANG W S, WANG X J, REN T R, JU X L . Expression of a wheat cytochrome P450 monooxygenase in yeast and its inhibition by glyphosate. Pest Management Science, 2005,4(61):402-406.
doi: 10.1002/ps.969 pmid: 15627243
[62] YAMADA T, KAMBARA Y, IMAISHI H, OHKAWA H . Molecular cloning of novel cytochrome P450 species induced by chemical treatments in cultured tobacco cells. Pesticide Biochemistry & Physiology, 2000,68(1):11-25.
doi: 10.1006/pest.2000.2496
[63] CUMMINS I, BRAZIERHICKS M, STOBIECKI M, FRANSKI R, EDWARDS R . Selective disruption of wheat secondary metabolism by herbicide safeners. Phytochemistry, 2006,67(16):1722-1730.
doi: 10.1016/j.phytochem.2006.01.012 pmid: 16494903
[64] RIECHERS D E, VAUGHN K C, MOLIN W T . The role of plant glutathione s-transferases in herbicide metabolism// ACS Symposium, 2005, 216-232.
doi: 10.1021/bk-2005-0899.ch019
[65] CUMMINS I, WORTLEY D J, SABBADIN F, HE Z, COXON C R, STRAKER H E, SELLARS J D, KNIGHT K, EDWARDS L, HUGHES D, KAUNDUN S S, HUTCHINGS S J, STEEL P G, EDWARDS R . Key role for a glutathione transferase in multiple- herbicide resistance in grass weeds. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(15):5812-5817.
doi: 10.1073/pnas.1221179110 pmid: 23530204
[66] SAPPL P G, CARROLL A J, CLIFTON R, LISTER R, WHELAN J, HARVEY MILLAR A, SINGH K B . The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. The Plant Journal, 2009,58(1):53-68.
doi: 10.1111/j.1365-313X.2008.03761.x pmid: 19067976
[67] WAGNER U, EDWARDS R, DIXON D P, MAUCH F . Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Molecular Biology, 2002,49(5):515-532.
[1] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[2] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[3] ZHANG PengXia,ZHOU XiuWen,LIANG Xue,GUO Ying,ZHAO Yan,LI SiShen,KONG FanMei. Genome-Wide Association Analysis for Yield and Nitrogen Efficiency Related Traits of Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2021, 54(21): 4487-4499.
[4] ZHANG YaWen, BAO ShuHui, TANG ZhenJia, WANG XiaoWen, YANG Fang, ZHANG DeChun, HU YiBing. Function of Sucrose Transporter OsSUT5 in Rice Pollen Development and Seed Setting [J]. Scientia Agricultura Sinica, 2021, 54(16): 3369-3380.
[5] ZHANG Fang,REN Yi,CAO JunMei,LI FaJi,XIA XianChun,GENG HongWei. Genome-wide Association Analysis of Wheat Grain Size Related Traits Based on SNP Markers [J]. Scientia Agricultura Sinica, 2021, 54(10): 2053-2063.
[6] CHEN YanFang,ZHANG MingWei,ZHANG Yan,DENG YuanYuan,WEI ZhenCheng,TANG XiaoJun,LIU Guang,LI Ping. Effects of Germination and Extrusion on Volatile Flavor Compounds in Brown Rice [J]. Scientia Agricultura Sinica, 2021, 54(1): 190-202.
[7] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[8] XiaoShuai HAO,MengMeng FU,ZaiDong LIU,JianBo HE,YanPing WANG,HaiXiang REN,DeLiang WANG,XingYong YANG,YanXi CHENG,WeiGuang DU,JunYi GAI. Genome-Wide QTL-Allele Dissection of 100-Seed Weight in the Northeast China Soybean Germplasm Population [J]. Scientia Agricultura Sinica, 2020, 53(9): 1717-1729.
[9] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[10] SONG SongQuan,LIU Jun,XU HengHeng,LIU Xu,HUANG Hui. ABA Metabolism and Signaling and Their Molecular Mechanism Regulating Seed Dormancy and Germination [J]. Scientia Agricultura Sinica, 2020, 53(5): 857-873.
[11] XU ChunMei,ZOU Ya,LIU ZiGang,MI WenBo,XU MingXia,DONG XiaoYun,CAO XiaoDong,ZHENG GuoQiang,FANG XinLing. Physiological and Biochemical Characteristics of Low Temperature Vernalization of Germinating Seeds of Brassica rapa [J]. Scientia Agricultura Sinica, 2020, 53(5): 929-941.
[12] CAO XiaoDong,LIU ZiGang,MI WenBo,XU ChunMei,ZOU Ya,XU MingXia,ZHENG GuoQiang,FANG XinLing,CUI XiaoRu,DONG XiaoYun,MI Chao,CHEN QiXian. Analysis on the Adaptability of Northward Planting of Brassica napus [J]. Scientia Agricultura Sinica, 2020, 53(20): 4164-4176.
[13] ZHANG ChunXiao,LI ShuFang,LIU XuYang,LIU Jie,LIU WenPing,LIU XueYan,LI ChunHui,WANG TianYu,LI XiaoHui. Establishment of Evaluation System for Drought Tolerance at Maize Germination Stage Under Soil Stress [J]. Scientia Agricultura Sinica, 2020, 53(19): 3867-3877.
[14] YU AiLi,ZHAO JinFeng,CHENG Kai,WANG ZhenHua,ZHANG Peng,LIU Xin,TIAN Gang,ZHAO TaiCun,WANG YuWen. Screening and Analysis of Key Metabolic Pathways in Foxtail Millet During Different Water Uptake Phases of Germination [J]. Scientia Agricultura Sinica, 2020, 53(15): 3005-3019.
[15] SUN Kai, LI DongXiu, YANG Jing, DONG JiChi, YAN XianCheng, LUO LiXin, LIU YongZhu, XIAO WuMing, WANG Hui, CHEN ZhiQiang, GUO Tao. Genome-Wide Association Analysis for Rice Submergence Seedling Rate [J]. Scientia Agricultura Sinica, 2019, 52(3): 385-398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!