Scientia Agricultura Sinica ›› 2009, Vol. 42 ›› Issue (11): 3843-3851 .doi: 10.3864/j.issn.0578-1752.2009.11.011

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Morphogenesis Model-Based Virtual Growth System of Cotton (Gossypium hirsutum L.)

ZHOU Juan, ZHOU Zhi-guo, CHEN Bing-lin, MENG Ya-li
  

  1. (南京农业大学农学院/江苏省信息农业高技术研究重点实验室)
  • Received:2009-03-02 Revised:2009-05-21 Online:2009-11-10 Published:2009-11-10
  • Contact: MENG Ya-li

Abstract: 【Objective】 Modeling dynamics of each organ size in cotton growth process, then a virtual growth system for cotton was implemented to provide a technical basis for research of virtual farming. 【Method】 Based on the potted plant research of cotton variety, sowing date, nitrogen, water and DPC in a summer seasons of 2005 and 2006, with the systematic analysis principle and mathematical modeling technique applied to cotton morphogenesis, a morphological model , which includes several sub-models of leaf, stem, boll, and so on, was developed by the quantitative analyses of experimental data. And a virtual growth system for cotton was implemented with usage of OpenGL for 3D graphic and MFC for graphical user interface. 【Result】 The results showed that the dynamic change of each organ size could be characterized by logistic equation in relation to GDD, nitrogen, water and DPC. The model was validated by the data from 2006, and the mean RMSEs were 0.85, 0.82, 0.87, 0.57, 0.086, 0.65, 0.74, 0.8, 0.73, 0. 016, 0.36 and 0.4 cm for main stem leaf length and width, main stem leaf stalk length, main stem internode length and diameter, fruiting branch leaf length and width, fruiting branch leaf stalk length, fruiting node length and diameter, and boll length and width, respectively. Then NURBS was applied to simulate the shape of cotton leaf and boll, internode and petiole were treated as cylinder. Finally, a cotton growth system which comprises of models, database and interface was implemented with OpenGL on the platform of Microsoft Visual C++ 6.0. 【Conclusion】 The system can be used to simulate the real growth process of each organ, individual and group with some inputs.

Key words: cotton, GDD (growing degree days), morphogenesis model, visualization, system

[1] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[2] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[3] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[4] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[5] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[6] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[7] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[8] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[9] ZHANG Jie,WANG Chuan,DONG XiaoXia,ZHU WenQi,YUE HuiLi,LIU ShengPing,ZHOU QingBo. Development and Application of Rapid Investigation and Analysis Platform for Agricultural and Rural Information Based on Fission Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4158-4174.
[10] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[11] ZiHan FAN,YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG. Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(18): 3600-3612.
[12] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[13] YANG ShiQi. Thought of Pollution Comprehensive Prevention and Control System of Non-Point Sources Based on National Food Security [J]. Scientia Agricultura Sinica, 2022, 55(17): 3380-3394.
[14] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[15] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!