Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (4): 824-833.doi: 10.3864/j.issn.0578-1752.2026.04.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Methane Emissions from Paddy Fields: Not Entirely Attributable to Rice Cultivation

ZHANG WeiJian(), YAN ShengJi, SHANG ZiYin, TANG ZhiWei, WU LiuGe, LI JiaRui, CHEN HaoTian, DENG AiXing, ZHANG Jun, ZHANG Xin, ZHENG ChengYan, SONG ZhenWei   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2025-08-22 Online:2026-02-10 Published:2026-02-10

Abstract:

Greenhouse gas emission inventories specifically target anthropogenic components. Consequently, internationally recognized accounting methodologies deduct natural background emissions when quantifying nitrous oxide from croplands and methane (CH4) from flooded lands. However, in compiling paddy CH4 emission inventories, the entirety of CH4 emitted from rice paddies is currently accounted for as anthropogenic contribution from rice cultivation. Here, through synthesis of empirical research, meta-analysis of published literatures, and model simulations, we analyzed the origins and cultivation history of rice paddies in China, key drivers of CH4 emissions, and fundamental accounting methodologies used in inventory compilation. The goal was to isolate and estimate the natural and anthropogenic contributions to CH4 emissions from rice paddies in China. Our results reveal that rice paddies possess dual attributes of both wetlands and croplands. Their CH4 emissions comprise both natural and anthropogenic components and should not be wholly attributed to human activities. Paddy CH4 emissions were found to be approximately 72.2% to 123.6% of those from their adjacent natural wetlands, indicating that converting low-lying lands and marshes to rice cultivation does not necessarily increase CH4 emissions. Global wetland restoration practices further demonstrate that water management regimes mimicking paddy field conditions during the growing season (groundwater depth 0-20 cm) optimally balance CH4 mitigation with soil carbon sequestration and biodiversity conservation, underscoring the rice cultivation potential as a climate-smart land-use practice. Estimates based on machine learning models suggest that natural emissions constitute more than 36% of total paddy CH4 fluxes, a proportion too significant to ignore. Therefore, analogous to the IPCC accounting methodologies for nitrous oxide from croplands and CH4 from flooded lands, natural background emissions should be deducted when compiling paddy CH4 inventories. As a responsible global leader in rice production, China should proactively shape international discourse on CH4 inventory compilation and mitigation strategies. We propose initiating methodological updates and foundational data enhancement by: (1) Strengthening theoretical research to refine accounting methodologies and ensure scientific rigor in inventories; (2) Enhancing foundational data collection through intensified in-situ monitoring and improved model estimation to reduce inventory uncertainty; and (3) Fostering international collaboration and exchange to elevate the influence of China and other major rice-producing nations in shaping global standards for paddy CH4 accounting and inventory compilation, thereby synergistically advancing carbon mitigation and sequestration actions in rice ecosystems.

Key words: rice production, paddy field, wetland, methane, emission inventory, carbon emission mitigation and sequestration

Fig. 1

Differences in CH4 emissions between paddy fields and natural wetlands in China CF: Continuous flooded paddy fields, NCF: Non-continuous flooded paddy fields. The numerals within parentheses denote the number of observations in the sample"

[1]
张卫建, 丁艳锋, 王龙俊, 芮雯奕, 郭嘉. 稻田生态系统在保障环太湖环境健康与经济持续增长中的重要作用. 科技导报, 2007, 25(17): 24-29.
ZHANG W J, DING Y F, WANG L J, RUI W Y, GUO J. The significance of paddy ecosystems in environmental health and sustainable development of economy in the regions around Tai Lake. Science & Technology Review, 2007, 25(17): 24-29. (in Chinese)
[2]
张卫建, 谭淑豪. 传统稻作蕴含着应对现代环境挑战的农耕智慧. 农民日报, (2025-07-30) [2025-08-21]. https://www.farmer.com.cn/2025/07/30/99993714.html.
ZHANG W J, TAN S H. Traditional rice cultivation contains agricultural wisdom to address modern environmental challenges. Farmers' Daily, (2025-07-30) [2025-08-21]. https://www.farmer.com.cn/2025/07/30/99993714.html. in Chinese)
[3]
农业农村部耕地质量监测保护中心. 国家耕地质量长期定位监测评价报告-2023年. 北京: 中国农业出版社, 2024.
Cultivated Land Quality Monitoring and Protection Center of the Ministry of Agriculture and Rural Affairs. National Long-term Monitoring and Evaluation Report on Cultivated Land Quality-2023. Beijing: China Agriculture Press, 2024. (in Chinese)
[4]
CARLSON K M, GERBER J S, MUELLER N D, HERRERO M, MACDONALD G K, BRAUMAN K A, HAVLIK P, O'CONNELL C S, JOHNSON J A, SAATCHI S, WEST P C. Greenhouse gas emissions intensity of global croplands. Nature Climate Change, 2017, 7(1): 63-68.

doi: 10.1038/NCLIMATE3158
[5]
EVANS C D, PEACOCK M, BAIRD A J, ARTZ R R E, BURDEN A, CALLAGHAN N, CHAPMAN P J, COOPER H M, COYLE M, CRAIG E, CUMMING A, DIXON S, GAUCI V, GRAYSON R P, HELFTER C, HEPPELL C M, HOLDEN J, JONES D L, KADUK J, LEVY P, MATTHEWS R, MCNAMARA N P, MISSELBROOK T, OAKLEY S, PAGE S E, RAYMENT M, RIDLEY L M, STANLEY K M, WILLIAMSON J L, WORRALL F, MORRISON R. Overriding water table control on managed peatland greenhouse gas emissions. Nature, 2021, 593(7860): 548-552.

doi: 10.1038/s41586-021-03523-1
[6]
中华人民共和国生态环境部. 关于公开征求《省级温室气体清单编制指南(修订版)》意见的函. (2025-08-05) [2025-08-21]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202508/t20250805_1124964.html.
Ministry of Ecology and Environment of the People's Republic of China. Letter on Soliciting Public Comments on the "Guidelines for the Compilation of Provincial Greenhouse Gas Inventories (Revised Edition)". (2025-08-05) [2025-08-21]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202508/t20250805_1124964.html. in Chinese)
[7]
IPCC. Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories, 2019. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/.
[8]
唐志伟, 张俊, 邓艾兴, 张卫建. 我国稻田甲烷排放的时空特征与减排途径. 中国生态农业学报(中英文), 2022, 30(4): 582-591.
TANG Z W, ZHANG J, DENG A X, ZHANG W J. Spatiotemporal characteristics and reduction approaches of methane emissions from rice fields in China. Chinese Journal of Eco-Agriculture, 2022, 30(4): 582-591. (in Chinese)
[9]
束龙仓, 王哲, 袁亚杰, 张凤海, 刘武, 鲁程鹏. 近40年三江平原典型区土地利用变化及其对地下水的影响. 水利学报, 2021, 52(8): 896-906.
SHU L C, WANG Z, YUAN Y J, ZHANG F H, LIU W, LU C P. Land use change and its impact on groundwater in the typical district of Sanjiang Plain during the past 40 years. Journal of Hydraulic Engineering, 2021, 52(8): 896-906. (in Chinese)
[10]
国家统计局. 国家数据. [2025-08-21]. https://data.stats.gov.cn/easyquery.htmcn=C01.
National Bureau of Statistics. National data. [2025-08-21]. https://data.stats.gov.cn/easyquery.htmcn=C01. in Chinese)
[11]
JIANG Y, VAN GROENIGEN K J, HUANG S, HUNGATE B A, VAN KESSEL C, HU S J, ZHANG J, WU L H, YAN X J, WANG L L, CHEN J, HANG X N, ZHANG Y, HORWATH W R, YE R Z, LINQUIST B A, SONG Z W, ZHENG C Y, DENG A X, ZHANG W J. Higher yields and lower methane emissions with new rice cultivars. Global Change Biology, 2017, 23(11): 4728-4738.

doi: 10.1111/gcb.13737 pmid: 28464384
[12]
张卫建, 张艺, 邓艾兴, 张俊. 我国水稻品种更新与稻作技术改进对碳排放的综合影响及趋势分析. 中国稻米, 2021, 27(4): 53-57.

doi: 10.3969/j.issn.1006-8082.2021.04.011
ZHANG W J, ZHANG Y, DENG A X, ZHANG J. Integrated impacts and trend analysis of rice cultivar renewal and planting technology improvement on carbon emission in China. China Rice, 2021, 27(4): 53-57. (in Chinese)
[13]
ZHANG Y, JIANG Y, TAI A P K, FENG J F, LI Z J, ZHU X C, CHEN J, ZHANG J, SONG Z W, DENG A X, LAL R, ZHANG W J. Contribution of rice variety renewal and agronomic innovations to yield improvement and greenhouse gas mitigation in China. Environmental Research Letters, 2019, 14(11): 114020.

doi: 10.1088/1748-9326/ab488d
[14]
QIAN H Y, ZHU X C, HUANG S, LINQUIST B, KUZYAKOV Y, WASSMANN R, MINAMIKAWA K, MARTINEZ-EIXARCH M, YAN X Y, ZHOU F, SANDER B O, ZHANG W J, SHANG Z Y, ZOU J W, ZHENG X H, LI G H, LIU Z H, WANG S H, DING Y F, VAN GROENIGEN K J, JIANG Y. Greenhouse gas emissions and mitigation in rice agriculture. Nature Reviews Earth & Environment, 2023, 4(10): 716-732.
[15]
TANG J Q, QIAN H Y, ZHU X C, LIU Z S, KUZYAKOV Y, ZOU J W, WANG J Y, XU Q, LI G H, LIU Z H, WANG S H, ZHANG W J, ZHANG J, HUANG S, DING Y F, VAN GROENIGEN K J, JIANG Y. Soil pH determines nitrogen effects on methane emissions from rice paddies. Global Change Biology, 2024, 30(11): e17577.

doi: 10.1111/gcb.v30.11
[16]
JIANG Y, QIAN H Y, HUANG S, ZHANG X Y, WANG L, ZHANG L, SHEN M X, XIAO X P, CHEN F, ZHANG H L, LU C Y, LI C, ZHANG J, DENG A X, VAN GROENIGEN K J, ZHANG W J. Acclimation of methane emissions from rice paddy fields to straw addition. Science Advances, 2019, 5(1): eaau9038.

doi: 10.1126/sciadv.aau9038
[17]
QIAN H Y, ZHANG N, CHEN J J, CHEN C Q, HUNGATE B A, RUAN J M, HUANG S, CHENG K, SONG Z W, HOU P F, ZHANG B, ZHANG J, WANG Z, ZHANG X Y, LI G H, LIU Z H, WANG S H, ZHOU G Y, ZHANG W J, DING Y F, VAN GROENIGEN K J, JIANG Y. Unexpected parabolic temperature dependency of CH4emissions from rice paddies. Environmental Science & Technology, 2022, 56(8): 4871-4881.

doi: 10.1021/acs.est.2c00738
[18]
FENG J F, CHEN C Q, ZHANG Y, SONG Z W, DENG A X, ZHENG C Y, ZHANG W J. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Agriculture, Ecosystems & Environment, 2013, 164: 220-228.

doi: 10.1016/j.agee.2012.10.009
[19]
CUI S H, LIU P F, GUO H N, NIELSEN C K, PULLENS J W M, CHEN Q, PUGLIESE L, WU S B. Wetland hydrological dynamics and methane emissions. Communications Earth & Environment, 2024, 5: 470.
[20]
HODGKINS S B, RICHARDSON C J, DOMMAIN R, WANG H J, GLASER P H, VERBEKE B, WINKLER B R, COBB A R, RICH V I, MISSILMANI M, FLANAGAN N, HO M, HOYT A M, HARVEY C F, VINING S R, HOUGH M A, MOORE T R, RICHARD P J H, DE LA CRUZ F B, TOUFAILY J, HAMDAN R, COOPER W T, CHANTON J P. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nature Communications, 2018, 9: 3640.

doi: 10.1038/s41467-018-06050-2 pmid: 30194308
[21]
HUANG S, SUN Y N, YU X C, ZHANG W J. Interactive effects of temperature and moisture on CO2 and CH4 production in a paddy soil under long-term different fertilization regimes. Biology and Fertility of Soils, 2016, 52(3): 285-294.

doi: 10.1007/s00374-015-1075-3
[22]
QIAN H Y, HUANG S, CHEN J, WANG L, HUNGATE B A, VAN KESSEL C, ZHANG J, DENG A X, JIANG Y, VAN GROENIGEN K J, ZHANG W J. Lower-than-expected CH4 emissions from rice paddies with rising CO2 concentrations. Global Change Biology, 2020, 26(4): 2368-2376.

doi: 10.1111/gcb.v26.4
[23]
QIAN H Y, CHEN J, ZHU X C, WANG L, LIU Y L, ZHANG J, DENG A X, SONG Z W, DING Y F, JIANG Y, VAN GROENIGEN K J, ZHANG W J. Intermittent flooding lowers the impact of elevated atmospheric CO2 on CH4 emissions from rice paddies. Agriculture, Ecosystems & Environment, 2022, 329: 107872.

doi: 10.1016/j.agee.2022.107872
[24]
HANG X N, ZHANG X, SONG C L, JIANG Y, DENG A X, HE R Y, LU M, ZHANG W J. Differences in rice yield and CH4 and N2O emissions among mechanical planting methods with straw incorporation in Jianghuai area, China. Soil and Tillage Research, 2014, 144: 205-210.

doi: 10.1016/j.still.2014.07.013
[25]
曹凑贵, 李成芳, 展茗, 汪金平. 稻田管理措施对土壤碳排放的影响. 中国农业科学, 2011, 44(1): 93-98. doi: 10.3864/j.issn.0578-1752.2011.01.011.
CAO C G, LI C F, ZHAN M, WANG J P. Effects of agricultural management practices on carbon emissions in paddy fields. Scientia Agricultura Sinica, 2011, 44(1): 93-98. doi: 10.3864/j.issn.0578-1752.2011.01.011. (in Chinese)
[26]
XU S Q, LIU X, NA M, YU X Y, LI Y Q, HUANG Y J, ZHANG J, ZHOU J H, TIAN C J. Effects of wetland disturbance on methane emissions and influential factors: A global meta-analysis of field studies. Science of the Total Environment, 2025, 959: 178325.

doi: 10.1016/j.scitotenv.2024.178325
[27]
SUN Y N, HUANG S, YU X C, ZHANG W J. Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in subtropical China. Plant and Soil, 2015, 397(1): 189-200.

doi: 10.1007/s11104-015-2611-5
[28]
FAO & ITPS. Status of the world's soil resources (SWSR)-main report. Rome, Italy: Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, 2015. http://www.fao.org/3/a-i5199e.pdf.
[29]
SHANG Z Y, CUI X Q, VAN GROENIGEN K J, KUHNERT M, ABDALLA M, LUO J F, ZHANG W J, SONG Z W, JIANG Y, SMITH P, ZHOU F. Global cropland nitrous oxide emissions in fallow period are comparable to growing-season emissions. Global Change Biology, 2024, 30(2): e17165.

doi: 10.1111/gcb.v30.2
[30]
QIAN H Y, YUAN Z Q, CHEN N N, ZHU X C, HUANG S, LU C Y, LIU K L, ZHOU F, SMITH P, TIAN H Q, XU Q, ZOU J W, LIU S W, SONG Z W, ZHANG W J, WANG S H, LIU Z H, LI G H, SHANG Z Y, DING Y F, VAN GROENIGEN K J, JIANG Y. Legacy effects cause systematic underestimation of N2O emission factors. Nature Communications, 2025, 16: 2775.

doi: 10.1038/s41467-025-58090-0
[31]
宋虓. 野生朱鹮种群的觅食地选择研究[D]. 北京: 北京林业大学, 2012.
SONG X. Study on feeding place selection of wild crested Ibis population[D]. Beijing: Beijing Forestry University, 2012. (in Chinese)
[32]
沈陆平, 方朝阳, 肖昕, 蔡振饶. 2021-2022年鄱阳湖10种珍稀候鸟定点观测数据集. 中国科学数据, 2022, 7(3): 319-328.
SHEN L P, FANG C Y, XIAO X, CAI Z R. A dataset of fixed-point observations of 10 rare migratory birds in Poyang Lake from 2021 to 2022. China Scientific Data, 2022, 7(3): 319-328. (in Chinese)
[33]
LANEY R. Delivering wildlife habitat on productive agricultural lands cost-effectively: The case of migratory shorebirds on California rice lands. Conservation Science and Practice, 2023, 5(7): e12955.

doi: 10.1111/csp2.v5.7
[34]
HUANG Y Y, CIAIS P, LUO Y Q, ZHU D, WANG Y P, QIU C J, GOLL D S, GUENET B, MAKOWSKI D, DE GRAAF I, LEIFELD J, KWON M J, HU J, QU L Y. Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown. Nature Climate Change, 2021, 11(7): 618-622.

doi: 10.1038/s41558-021-01059-w
[35]
ZOU J Y, ZIEGLER A D, CHEN D L, MCNICOL G, CIAIS P, JIANG X, ZHENG C M, WU J, WU J, LIN Z Y, HE X Y, BROWN L E, HOLDEN J, ZHANG Z T, RAMCHUNDER S J, CHEN A P, ZENG Z Z. Rewetting global wetlands effectively reduces major greenhouse gas emissions. Nature Geoscience, 2022, 15(8): 627-632.

doi: 10.1038/s41561-022-00989-0
[36]
和玉璞, 张展羽, 徐俊增, 杨士红, 洪大林. 控制地下水位减少节水灌溉稻田氮素淋失. 农业工程学报, 2014, 30(23): 121-127.
HE Y P, ZHANG Z Y, XU J Z, YANG S H, HONG D L. Reducing nitrogen leaching losses from paddy field under water-saving irrigation by water table control. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(23): 121-127. (in Chinese)
[37]
向万胜, 李卫红, 童成立, 吴金水, 李学垣. 丘岗稻田地下水位动态及对土壤氮磷有效性的影响. 生态学报, 2002, 22(4): 513-519.
XIANG W S, LI W H, TONG C L, WU J S, LI X Y. Dynamic change of groundwater level in waterlogged gleyed paddy soils in hilly red soil region and its effects on availability of soil nitrogen and phosphorus. Acta Ecologica Sinica, 2002, 22(4): 513-519. (in Chinese)
[38]
尹忞昊, 陈池波, 卢奕亨, 田云. 中国农业碳排放密度的时空特征、动态演进与空间效应. 中国农业科学, 2025, 58(18): 3710-3727. doi: 10.3864/j.issn.0578-1752.2025.18.010.
YIN M H, CHEN C B, LU Y H, TIAN Y. China's agricultural carbon emission density: spatiotemporal characteristics, dynamic evolution, and spatial effect. Scientia Agricultura Sinica, 2025, 58(18): 3710-3727. doi: 10.3864/j.issn.0578-1752.2025.18.010. (in Chinese)
[39]
孙建飞, 程琨. 农田土壤固碳与温室气体排放计量研究进展. 中国农业科学, 2025, 58(11): 2190-2205. doi: 10.3864/j.issn.0578-1752.2025.11.009.
SUN J F, CHENG K. A review of soil carbon sequestration and greenhouse gas emissions quantification in cropland. Scientia Agricultura Sinica, 2025, 58(11): 2190-2205. doi: 10.3864/j.issn.0578-1752.2025.11.009. (in Chinese)
[40]
FICK S E, HIJMANS R J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 2017, 37(12): 4302-4315.

doi: 10.1002/joc.2017.37.issue-12
[41]
ADALIBIEKE W, CUI X Q, CAI H W, YOU L Z, ZHOU F. Global crop-specific nitrogen fertilization dataset in 1961-2020. Scientific Data, 2023, 10: 617.

doi: 10.1038/s41597-023-02526-z pmid: 37696817
[42]
CUI X Q, ZHOU F, CIAIS P, DAVIDSON E A, TUBIELLO F N, NIU X Y, JU X T, CANADELL J G, BOUWMAN A F, JACKSON R B, MUELLER N D, ZHENG X H, KANTER D R, TIAN H Q, ADALIBIEKE W, BO Y, WANG Q H, ZHAN X Y, ZHU D Q. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food, 2021, 2(11): 886-893.

doi: 10.1038/s43016-021-00384-9 pmid: 37117501
[43]
张卫建, 尚子吟, 张俊, 严圣吉, 邓艾兴, 张鑫, 郑成岩, 宋振伟. 农业温室气体排放统计核算体系的规范化建设. 中国农业科学, 2023, 56(22): 4467-4477. doi: 10.3864/j.issn.0578-1752.2023.22.009.
ZHANG W J, SHANG Z Y, ZHANG J, YAN S J, DENG A X, ZHANG X, ZHENG C Y, SONG Z W. Standardized establishment and improvement of accounting system of agriculture greenhouse gas emission. Scientia Agricultura Sinica, 2023, 56(22): 4467-4477. doi: 10.3864/j.issn.0578-1752.2023.22.009. (in Chinese)
[44]
张卫建, 严圣吉, 张俊, 江瑜, 邓艾兴. 国家粮食安全与农业双碳目标的双赢策略. 中国农业科学, 2021, 54(18): 3892-3902. doi: 10.3864/j.issn.0578-1752.2021.18.009.
ZHANG W J, YAN S J, ZHANG J, JIANG Y, DENG A X. Win-win strategy for national food security and agricultural double-carbon goals. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902. doi: 10.3864/j.issn.0578-1752.2021.18.009. (in Chinese)
[1] YANG GuoChang, ZHENG Yue, BAO XiangNan, DAI YingChun, WANG JinGang, BAI XueFeng, SUN Wei, LI XiHe, ZHANG ShuJun. Research Progress on the Application of Mid-Infrared Spectroscopy Analysis Technology in Predicting Methane Emissions from Cows [J]. Scientia Agricultura Sinica, 2025, 58(9): 1856-1866.
[2] YANG Fu, WEI ShanJun, ZHANG XiaoXia, ZHANG LinMin, LIU HongXiu, LI YiJun, TONG YaPing. Characterization and Utilization of Rhizosphere Microbiota from Wild Plants in Lalu Wetland in Xizang for Alleviating Saline-Alkali Stress in Maize [J]. Scientia Agricultura Sinica, 2025, 58(20): 4144-4157.
[3] LI XiaoPeng, LIU YunLong, CUI JiaJun, TU Yan, JIANG LinShu, CHENG ShuRu. Effects of Chlorogenic Acid on Rumen Methane Emission, Fermentation Parameters and Performance of Late Lactating Cows Based on the GreenFeed System [J]. Scientia Agricultura Sinica, 2025, 58(14): 2904-2913.
[4] GAO YaFei, ZHAO YuanBo, XU Lin, SUN JiaYue, XIA YuXuan, XUE Dan, WU HaiWen, NING Hang, WU AnChi, WU Lin. Long-Term Sphagnum Cultivation in Cold Waterlogged Paddy Fields Increases Organic Carbon Content and Decreases Soil Extracellular Enzyme Activities [J]. Scientia Agricultura Sinica, 2024, 57(8): 1533-1546.
[5] QIU HaiHua, KUAI LeiXin, ZHANG Lu, LIU LiSheng, WEN ShiLin, CAI ZeJiang. Characteristics of Acidity and Nutrient Changes in Red Soil After Conversion of Paddy Field to Dry Land and Vegetable Field [J]. Scientia Agricultura Sinica, 2024, 57(3): 525-538.
[6] ZHANG WeiJian, SHANG ZiYin, ZHANG Jun, YAN ShengJi, DENG AiXing, ZHANG Xin, ZHENG ChengYan, SONG ZhenWei. Standardized Establishment and Improvement of Accounting System of Agriculture Greenhouse Gas Emission [J]. Scientia Agricultura Sinica, 2023, 56(22): 4467-4477.
[7] YANG BinJuan,LI Ping,HU QiLiang,HUANG GuoQin. Effects of the Mixted-cropping of Chinese Milk Vetch and Rape on Soil Nitrous Oxide Emission and Abundance of Related Functional Genes in Paddy Fields [J]. Scientia Agricultura Sinica, 2022, 55(4): 743-754.
[8] MA Yuan,CHI MeiJing,ZHANG YuLing,FAN QingFeng,YU Na,ZOU HongTao. Change Characteristics of Organic Carbon and Total Nitrogen in Water-Stable Aggregate After Conversion from Upland to Paddy Field in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605.
[9] ShiChao WANG,ZhiHao YAN,JinYu WANG,ShengChang HUAI,HongLiang WU,TingTing XING,HongLing YE,ChangAi LU. Nitrogen Fertilizer and Its Combination with Straw Affect Soil Labile Carbon and Nitrogen Fractions in Paddy Fields [J]. Scientia Agricultura Sinica, 2020, 53(4): 782-794.
[10] YUAN Wu,JIN ZhenJiang,CHENG YueYang,JIA YuanHang,LIANG JinTao,QIU JiangMei,PAN FuJing,LIU DeShen. Characteristics of Soil Enzyme Activities and CO2 and CH4 Emissions from Natural Wetland and Paddy Field in Karst Areas [J]. Scientia Agricultura Sinica, 2020, 53(14): 2897-2906.
[11] LIU ShaoWen,YIN Min,CHU Guang,XU ChunMei,WANG DanYing,ZHANG XiuFu,CHEN Song. Effects of Various Paddy-Upland Crop Rotations and Nitrogen Fertilizer Levels on CH4 Emission in the Middle and Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2019, 52(14): 2484-2499.
[12] PENG XianLong,WANG Wei,ZHOU Na,LIU HaiYang,LI PengFei,LIU ZhiLei,YU CaiLian. Analysis of Fertilizer Application and Its Reduction Potential in Paddy Fields of Heilongjiang Province [J]. Scientia Agricultura Sinica, 2019, 52(12): 2092-2100.
[13] ZHOU Yan, DONG LiFeng, DENG KaiDong, XU GuiShan, DIAO QiYu. Development of Models of Methane Emissions from Growing Sheep [J]. Scientia Agricultura Sinica, 2019, 52(10): 1797-1806.
[14] PengFei LI, XiaoKun LI, WenFeng HOU, Tao REN, RiHuan CONG, ChangWen DU, LieHuo XING, ShaoHua WANG, JianWei LU. Studying the Fate and Recovery Efficiency of Controlled Release Urea in Paddy Soil Using 15N Tracer Technique [J]. Scientia Agricultura Sinica, 2018, 51(20): 3961-3971.
[15] JIA ShuHai, ZHANG JiaNan, ZHANG YuLing, DANG XiuLi, FAN QingFeng, WANG Zhan, YU Na, ZOU HongTao, ZHANG YuLong. Changes of the Characteristics of Soil Organic Carbon and Total Nitrogen After Conversation from Upland to Paddy Field in Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2017, 50(7): 1252-1262.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!