Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (9): 1856-1866.doi: 10.3864/j.issn.0578-1752.2025.09.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Research Progress on the Application of Mid-Infrared Spectroscopy Analysis Technology in Predicting Methane Emissions from Cows

YANG GuoChang1(), ZHENG Yue1, BAO XiangNan2,3, DAI YingChun4, WANG JinGang4, BAI XueFeng4, SUN Wei2, LI XiHe2, ZHANG ShuJun1()   

  1. 1 Huazhong Agricultural University, Wuhan 430070
    2 Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517
    3 National Center of Technology Innovation for Dairy Industry, Hohhot 010020
    4 Saikexing Pasture in Togtoh County, Hohhot 010200
  • Received:2024-05-22 Accepted:2025-03-11 Online:2025-05-08 Published:2025-05-08
  • Contact: ZHANG ShuJun

Abstract:

The emission of greenhouse gases not only leads to global warming and changes in the climate system but also may cause damage to the ozone layer, thereby exacerbating the greenhouse effect. Although the total emissions of methane gas are not as high as carbon dioxide gas, and its residence time in the atmosphere is relatively short, it possesses a higher global warming potential, making it a highly threatening greenhouse gas. Livestock farming is a major source of anthropogenic methane gas emissions, with the methane emissions from cows accounting for nearly one-fifth of the total proportion. Given this context, the measurement of individual cow methane emissions becomes crucial. Understanding the methane emissions produced by each cow can help identify cows with high emissions and implement more targeted measures to reduce emissions. Therefore, there is a need for convenient high-throughput technologies for measuring cow methane emissions. Traditional methane measurement techniques, such as respiration chambers and sulfur hexafluoride gas tracing technology, are time-consuming, labor-intensive, and costly, which hinders the monitoring of methane emissions on a large scale for individual cows. Using a combination of cow trait indicators to predict the methane emission characteristics of cows is a feasible alternative method. Numerous methane prediction equations based on factors, such as cow energy intake, dry matter intake, and daily feed composition, have been developed. However, these prediction factors are also challenging to collect on commercial farms, limiting the feasibility of these equations for large-scale applications. Considering that mid-infrared spectroscopic information of cow milk can be obtained in bulk and at low cost from routine cow production performance assessments, foreign researchers have been exploring the feasibility of predicting cow methane emissions based on mid-infrared spectroscopic information from cow milk over the past decade. It has been confirmed that using mid-infrared spectroscopy to predict cow methane emissions is feasible, biologically plausible, and moderately accurate. However, the researchers in this area have not yet begun in China. This paper elaborated on the current research status of predicting cow methane emissions using mid-infrared spectroscopic information from cow milk and emphasized the key points and challenges that need to be addressed in future research. It summarized the different strategies adopted by various studies in terms of cow methane emission measurement indicators, methane phenotype observation value determination methods, mid-infrared spectroscopy data collection, modeling methods, and validation strategies, aiming to provide insights for Chinese researchers conducting related studies.

Key words: dairy cattle, mid infrared spectroscopy, methane emissions, prediction model

Table 1

Summary of research on predicting methane emission based on Mid Infrared Spectroscopy"

参考文献
Reference
样本量
Sample size
甲烷排放量
测定方法
CH4 emission measurement method
测定目标
Predicting target
预测因素
Predictive factor
特征区段
Characteristic band
预处理Preprocessing 模型
Model
结果
Result (optimal)
[36] 59—77 SF6 MEP(g·d-1)
MEI(g·kg-1 milk)
MIRS
(AMS/WAMS)
972—1589 cm-1,
1720—1782 cm-1,
2746—2970 cm-1
no/1D
PLS R2cv=0.79,
RPD=2.19,
SEcv=5.14 g·kg-1 milk
[36,38] 446 SF6 MEP(g·d-1)
MIRS(WAMS),
DIM
968—1577 cm-1,
1720—1809 cm-1,
2561—2966 cm-1
1D and
DIM-LP
PLS R 2cv=0.67,
SEcv=73 g·d-1,
[45] 532 SF6 MEP(g·d-1)
MIRS(WAMS),
DIM
968—1577 cm-1,
1720—1809 cm-1,
2561—2966 cm-1
1D and
DIM-LP
M-PLS R 2cv=0.70,
SEcv=70 g·d-1,
[39] 3623
MRCD;
2202 MEP
Sniffer+
CO2
MCDR(CH4:CO2)
MEP(L·d-1)
MIRS(AMS),
MY,H, DIM, P, S
1000—1550 cm-1,
1705—1820 cm-1,
2700—2955 cm-1
no/SG-1D PLS R 2v=0.39,
RMSEp= 94 L·d-1
[49] 218 RC MEP(g·d-1)
MEY(g·kg-1 DMI)
MEI(g·kg-1 FPCM)
MIRS 964—1581 cm-1,
1715—1773 cm-1,
2814—2968 cm-1
SG-1D PLS RPD=1.39,
R 2cv=0.49,
RMSEcv=12.8%
[46] 1150 MFA MEP(g·d-1)
MEY(g·kg-1 DMI)
MEI(g·kg-1 FPCM,
g·kg-1 CYCURD,
g·kg-1 CYSOLIDS)
MIRS 930—5000 cm-1 no BayesB R 2cv=0.57,
RMSEcv=1.17 g·kg-1 FPCM
[51] 584 RC MEP(g·d-1)
MIRS(WAMS)
DIM
968—1577 cm-1,
1720—1809 cm-1,
2561—2966 cm-1
1D and
DIM—LP
MPLS R 2cv=0.57,
SEcv=47 g·d-1
[48] 801 Sniffer MC(mg·m-3) MIRS 925—1584 cm-1,
1719—1784 cm-1,
2652—2976 cm-1 or
1623—1670 cm-1,
3166—3254 cm-1,
3285—3463 cm-1,
3547—3659 cm-1
no PLS R 2v=0.49,
RMSEp=0.192
[40] 1089 RC+SF6 MEP(g·d-1)
MIRS(WAMS),
DIM,MY,P,B
968—1577 cm-1,
1720—1809 cm-1,
2561—2966 cm-1
1D and
DIM-LP
M-PLS R 2cv=0. 68,
SEcv=57 g·d-1
[41] 151 GF MEP(g·d-1)
MEY(g·kg-1 DMI)
MEI(g·kg-1 FPCM)
MIRS(AMS),
DMI, MY, P
965—1570 cm-1,
1702—1817 cm-1,
2557—2998 cm-1
SG-1D PLS RPD=1.7,
R 2v=0.66,
RMSEv=4.7 g·kg-1 FPCM
[42] 129 GF MEP(g·d-1)
MEY(g·kg-1 DMI)
MEI(g·kg-1 milk,
g·kg-1 FPCM)
MIRS(MS/AMS),
DIM, MY, P,
FPCM
968—1577 cm-1,
1720—1809 cm-1,
2561—2966 cm-1
DIM-LP;
no or 1D-
SNV-DMT
M-PLS R 2v=0.9,
SEv=2.25 g·kg-1 FPCM
[47] 181 Sniffer+GF MEP(g·d-1) MIRS(AMS), AC,
SC, DIM, C, P,
MY, FY, PY
1000—1550 cm-1,
1705—1820 cm-1,
2700—2955 cm-1
MSC and
SG-1D
PLS/BRANN/
LMANN/
SCGANN,
Rcv=0.704,
RMSEcv=70.83,
RPDcv=1.43
[43] 277 GF MEP(g·d-1) MIRS(MS/JMS/
WAMS), DIM,
MY, FY, PY
930—1600 cm-1,
1710—2990 cm-1,
3690—3822 cm-1
no PLS/NN R=0.71,
RPIQ=195
[1]
CCAC&UNEP. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions[R]. Nairobi: United Nations Environment Programme, 2021: 28. https://www.unep.org/resources/report/global-methane-assessment-benefits-and-costs-mitigating-methane-emissions.
[2]
胡婉玲, 黄玛兰, 王红玲. 低碳背景下畜牧业甲烷排放现状与减排策略研究. 华中农业大学学报(自然科学版), 2022, 41(03): 115-123.
HU W L, HUANG M L, WANG H L. Methane emission and mitigation strategy of animal husbandry under low carbon background. Journal of Huazhong Agricultural University, 2022, 41(03): 115-123. (in Chinese)
[3]
HUANG X L, SHI B Y, WANG S, YIN C B, FANG L N. Mitigating environmental impacts of milk production via integrated maize silage planting and dairy cow breeding system: A case study in China. Journal of Cleaner Production, 2021, 309: 127343.
[4]
HRISTOV A N, KEBREAB E, NIU M, OH J, BANNINK A, BAYAT A R, BOLAND T M, BRITO A F, CASPER D P, CROMPTON L A, et al. Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. Journal of Dairy Science, 2018, 101(7): 6655-6674.

doi: S0022-0302(18)30370-9 pmid: 29680642
[5]
NEGUSSIE E, GONZÁLEZ-RECIO O, BATTAGIN M, BAYAT A R, BOLAND T, DE HAAS Y, GARCIA-RODRIGUEZ A, GARNSWORTHY P C, GENGLER N, KREUZER M, et al. Integrating heterogeneous across-country data for proxy-based random forest prediction of enteric methane in dairy cattle. Journal of Dairy Science, 2022, 105(6): 5124-5140.
[6]
GRA. Technical Manual on Respiration Chamber Designs[R]. 2018.
[7]
CASTELÁN ORTEGA O A, PEDRAZA BELTRÁN P E, HERNÁNDEZ PINEDA G S, BENAOUDA M, GONZÁLEZ RONQUILLO M, T MOLINA L, KU VERA J C, MONTELONGO PÉREZ H D, VÁZQUEZ CARRILLO M F. Construction and operation of a respiration chamber of the head-box type for methane measurement from cattle. Animals, 2020, 10(2): 227.
[8]
GRA. Guidelines for use of sulphur hexafluoride (SF6) tracer technique to measure enteric methane emissions from ruminants[R]. 2014.
[9]
GARNSWORTHY P C, CRAIGON J, HERNANDEZ-MEDRANO J H, SAUNDERS N. On-farm methane measurements during milking correlate with total methane production by individual dairy cows. Journal of Dairy Science, 2012, 95(6): 3166-3180.

doi: 10.3168/jds.2011-4605 pmid: 22612952
[10]
HUHTANEN P, CABEZAS-GARCIA E H, UTSUMI S, ZIMMERMAN S. Comparison of methods to determine methane emissions from dairy cows in farm conditions. Journal of Dairy Science, 2015, 98(5): 3394-3409.

doi: 10.3168/jds.2014-9118 pmid: 25771050
[11]
CHAGUNDA M G G, ROSS D, ROBERTS D J. On the use of a laser methane detector in dairy cows. Computers and Electronics in Agriculture, 2009, 68(2): 157-160.
[12]
ZHAO Y G, NAN X M, YANG L, ZHENG S S, JIANG L S, XIONG B H. A review of enteric methane emission measurement techniques in ruminants. Animals, 2020, 10(6): 1004.
[13]
TEDESCHI L O, ABDALLA A L, ÁLVAREZ C, ANUGA S W, ARANGO J, BEAUCHEMIN K A, BECQUET P, BERNDT A, BURNS R, DE CAMILLIS C, et al. Quantification of methane emitted by ruminants: A review of methods. Journal of Animal Science, 2022, 100(7): skac197.
[14]
GHASSEMI NEJAD J, JU M S, JO J H, OH K H, LEE Y S, LEE S D, KIM E J, ROH S, LEE H G. Advances in methane emission estimation in livestock: A review of data collection methods, model development and the role of AI technologies. Animals, 2024, 14(3): 435.
[15]
APPUHAMY J A D R N, FRANCE J, KEBREAB E. Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. Global Change Biology, 2016, 22(9): 3039-3056.

doi: 10.1111/gcb.13339 pmid: 27148862
[16]
NIU M T, KEBREAB E, HRISTOV A N, OH J, ARNDT C, BANNINK A, BAYAT A R, BRITO A F, BOLAND T, CASPER D, et al. Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology, 2018, 24(8): 3368-3389.
[17]
BENAOUDA M, MARTIN C, LI X R, KEBREAB E, HRISTOV A N, YU Z T, YÁÑEZ-RUIZ D R, REYNOLDS C K, CROMPTON L A, DIJKSTRA J, et al. Evaluation of the performance of existing mathematical models predicting enteric methane emissions from ruminants: Animal categories and dietary mitigation strategies. Animal Feed Science and Technology, 2019, 255: 114207.
[18]
董利锋, YAN Tianhai, 屠焰, 刁其玉. 中红外光谱技术在牛奶营养物质预测及奶牛相关特性分析上的应用. 动物营养学报, 2016, 28(2): 326-334.

doi: 10.3969/j.issn.1006-267x.2016.02.004
DONG L F, YAN T H, TU Y, DIAO Q Y. Application of mid-infrared spectrometry in milk nutrient components prediction and related traits analysis of dairy cows. Chinese Journal of Animal Nutrition, 2016, 28(2): 326-334. (in Chinese)
[19]
梁秋曼, 南良康, 陈明新, 熊琪, 秦则平, 吴喜娟, 杨先一, 张淑君. 利用中红外光谱MIR预测奶牛饲料效率的研究进展. 中国奶牛, 2018(10): 5-8.
LIANG Q M, NAN L K, CHEN M X, XIONG Q, QIN Z P, WU X J, YANG X Y, ZHANG S J. Research progress on feed efficiency of dairy cows from mid-infrared(MIR) spectra of milk. China Dairy Cattle, 2018(10): 5-8. (in Chinese)
[20]
陈焱森, 阮健, 陈绍祜, 滑国华, 王贵强, 熊家军, 杨利国, 张淑君. MIR预测牛奶脂肪酸含量及其遗传力的研究进展. 中国奶牛, 2018(9): 60-64.
CHEN Y S, RUAN J, CHEN S H, HUA G H, WANG G Q, XIONG J J, YANG L G, ZHANG S J. Research progress on prediction of milk fatty acid content and heritability by MIR. China Dairy Cattle, 2018(9): 60-64. (in Chinese)
[21]
陈焱森, 阮健, 熊家军, 李喜和, 何长久, 孙伟, 丁瑞, 张淑君. 应用MIR测定牛奶中各种蛋白质含量的研究进展. 中国奶牛, 2018(10): 66-70.
CHEN Y S, RUAN J, XIONG J J, LI X H, HE C J, SUN W, DING R, ZHANG S J. Advances in the determination of various protein contents in milk by MIR. China Dairy Cattle, 2018(10): 66-70. (in Chinese)
[22]
陈焱森, 上官爱哨, 陈明新, 马亚宾, 李春芳, 徐为民, 程春宝, 熊琪, 张淑君. 应用MIR预测牛健康状况的研究进展. 中国奶牛, 2020(1): 58-63.
CHEN Y S, SHANGGUAN A S, CHEN M X, MA Y B, LI C F, XU W M, CHENG C B, XIONG Q, ZHANG S J. Advances in the application of MIR to predict the health status of cattle. China Dairy Cattle, 2020(1): 58-63. (in Chinese)
[23]
VAN GASTELEN S, DIJKSTRA J. Prediction of methane emission from lactating dairy cows using milk fatty acids and mid-infrared spectroscopy. Journal of the Science of Food and Agriculture, 2016, 96(12): 3963-3968.

doi: 10.1002/jsfa.7718 pmid: 26996655
[24]
BERNARD L, LEROUX C, CHILLIARD Y. Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Advances in Experimental Medicine and Biology, 2008, 606: 67-108.

doi: 10.1007/978-0-387-74087-4_2 pmid: 18183925
[25]
BOADI D, BENCHAAR C, CHIQUETTE J, MASSÉ D. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canadian Journal of Animal Science, 2004, 84(3): 319-335.
[26]
ELLIS J L, DIJKSTRA J, KEBREAB E, BANNINK A, ODONGO N E, B W MC B R I D E, FRANCE J. Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. The Journal of Agricultural Science, 2008, 146(2): 213-233.
[27]
FIEVEZ V, COLMAN E, CASTRO-MONTOYA J M, STEFANOV I, VLAEMINCK B. Milk odd- and branched-chain fatty acids as biomarkers of rumen function: An update. Animal Feed Science and Technology, 2012, 172(1/2): 51-65.
[28]
VAN LINGEN H J, CROMPTON L A, HENDRIKS W H, REYNOLDS C K, DIJKSTRA J. Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle. Journal of Dairy Science, 2014, 97(11): 7115-7132.

doi: 10.3168/jds.2014-8268 pmid: 25218750
[29]
PATRA A K. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livestock Science, 2013, 155(2/3): 244-254.
[30]
DE MARCHI M, PENASA M, ZIDI A, MANUELIAN C L. Invited review: use of infrared technologies for the assessment of dairy products: applications and perspectives. Journal of Dairy Science, 2018, 101(12): 10589-10604.
[31]
SOYEURT H, DARDENNE P, DEHARENG F, LOGNAY G, VESELKO D, MARLIER M, BERTOZZI C, MAYERES P, GENGLER N. Estimating fatty acid content in cow milk using mid-infrared spectrometry. Journal of Dairy Science, 2006, 89(9): 3690-3695.

pmid: 16899705
[32]
SOYEURT H, DEHARENG F, MAYERES P, BERTOZZI C, GENGLER N. Variation of Delta 9-desaturase activity in dairy cattle. Journal of Dairy Science, 2008, 91(8): 3211-3224.

doi: 10.3168/jds.2007-0518 pmid: 18650299
[33]
SOYEURT H, DEHARENG F, GENGLER N, MCPARLAND S, WALL E, BERRY D P, COFFEY M, DARDENNE P. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. Journal of Dairy Science, 2011, 94(4): 1657-1667.

doi: 10.3168/jds.2010-3408 pmid: 21426953
[34]
DE MARCHI M, TOFFANIN V, CASSANDRO M, PENASA M. Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits 1. Journal of Dairy Science, 2014, 97(3): 1171-1186.

doi: 10.3168/jds.2013-6799 pmid: 24440251
[35]
RUTTEN M J M, BOVENHUIS H, HETTINGA K A, VAN VALENBERG H J F, VAN ARENDONK J A M. Predicting bovine milk fat composition using infrared spectroscopy based on milk samples collected in winter and summer. Journal of Dairy Science, 2009, 92(12): 6202-6209.

doi: 10.3168/jds.2009-2456 pmid: 19923625
[36]
DEHARENG F, DELFOSSE C, FROIDMONT E, SOYEURT H, MARTIN C, GENGLER N, VANLIERDE A, DARDENNE P. Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows. Animal, 2012, 6(10): 1694-1701.

doi: 10.1017/S1751731112000456 pmid: 23031566
[37]
GARNSWORTHY P C, CRAIGON J, HERNANDEZ-MEDRANO J H, SAUNDERS N. Variation among individual dairy cows in methane measurements made on farm during milking. Journal of Dairy Science, 2012, 95(6): 3181-3189.

doi: 10.3168/jds.2011-4606 pmid: 22612953
[38]
VANLIERDE A, VANROBAYS M L, DEHARENG F, FROIDMONT E, SOYEURT H, MCPARLAND S, LEWIS E, DEIGHTON M H, GRANDL F, KREUZER M, GREDLER B, DARDENNE P, GENGLER N. Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra. Journal of Dairy Science, 2015, 98(8): 5740-5747.

doi: 10.3168/jds.2014-8436 pmid: 26026761
[39]
SHETTY N, DIFFORD G, LASSEN J, LØVENDAHL P, BUITENHUIS A J. Predicting methane emissions of lactating Danish Holstein cows using Fourier transform mid-infrared spectroscopy of milk. Journal of Dairy Science, 2017, 100(11): 9052-9060.

doi: S0022-0302(17)30861-5 pmid: 28918149
[40]
VANLIERDE A, DEHARENG F, GENGLER N, FROIDMONT E, MCPARLAND S, KREUZER M, BELL M, LUND P, MARTIN C, KUHLA B, SOYEURT H. Improving robustness and accuracy of predicted daily methane emissions of dairy cows using milk mid-infrared spectra. Journal of the Science of Food and Agriculture, 2021, 101(8): 3394-3403.

doi: 10.1002/jsfa.10969 pmid: 33222175
[41]
LIU R, HAILEMARIAM D, YANG T, MIGLIOR F, SCHENKEL F, WANG Z, STOTHARD P, ZHANG S, PLASTOW G. Predicting enteric methane emission in lactating Holsteins based on reference methane data collected by the GreenFeed system. Animal, 2022, 16(3): 100469.
[42]
COPPA M, VANLIERDE A, BOUCHON M, JURQUET J, MUSATI M, DEHARENG F, MARTIN C. Methodological guidelines: Cow milk mid-infrared spectra to predict reference enteric methane data collected by an automated head-chamber system. Journal of Dairy Science, 2022, 105(11): 9271-9285.
[43]
MCPARLAND S, FRIZZARIN M, LAHART B, KENNEDY M, SHALLOO L, EGAN M, STARSMORE K, BERRY D P. Predicting methane emissions of individual grazing dairy cows from spectral analyses of their milk samples. Journal of Dairy Science, 2024, 107(2): 978-991.
[44]
KANDEL P B, VANROBAYS M L, VANLIERDE A, DEHARENG F, FROIDMONT E, GENGLER N, SOYEURT H. Genetic parameters of mid-infrared methane predictions and their relationships with milk production traits in Holstein cattle. Journal of Dairy Science, 2017, 100(7): 5578-5591.

doi: S0022-0302(17)30498-8 pmid: 28527796
[45]
VANLIERDE A, VANROBAYS M L, GENGLER N, DARDENNE P, FROIDMONT E, SOYEURT H, MCPARLAND S, LEWIS E, DEIGHTON M H, MATHOT M, DEHARENG F. Milk mid-infrared spectra enable prediction of lactation-stage-dependent methane emissions of dairy cattle within routine population-scale milk recording schemes. Animal Production Science, 2016, 56(3): 258.
[46]
BITTANTE G, CIPOLAT-GOTET C. Direct and indirect predictions of enteric methane daily production, yield, and intensity per unit of milk and cheese, from fatty acids and milk Fourier-transform infrared spectra. Journal of Dairy Science, 2018, 101(8): 7219-7235.

doi: S0022-0302(18)30515-0 pmid: 29803412
[47]
SHADPOUR S, CHUD T C S, HAILEMARIAM D, PLASTOW G, OLIVEIRA H R, STOTHARD P, LASSEN J, MIGLIOR F, BAES C F, TULPAN D, SCHENKEL F S. Predicting methane emission in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks. Journal of Dairy Science, 2022, 105(10): 8272-8285.
[48]
WANG Q Y, BOVENHUIS H. Validation strategy can result in an overoptimistic view of the ability of milk infrared spectra to predict methane emission of dairy cattle. Journal of Dairy Science, 2019, 102(7): 6288-6295.

doi: S0022-0302(19)30398-4 pmid: 31056328
[49]
VAN GASTELEN S, MOLLENHORST H, ANTUNES-FERNANDES E C, HETTINGA K A, VAN BURGSTEDEN G G, DIJKSTRA J, RADEMAKER J L W. Predicting enteric methane emission of dairy cows with milk Fourier-transform infrared spectra and gas chromatography-based milk fatty acid profiles. Journal of Dairy Science, 2018, 101(6): 5582-5598.

doi: S0022-0302(18)30225-X pmid: 29550122
[50]
MARTÍNEZ-MARÍN G, TOLEDO-ALVARADO H, AMALFITANO N, GALLO L, BITTANTE G. Lactation modeling and the effects of rotational crossbreeding on milk production traits and milk-spectra- predicted enteric methane emissions. Journal of Dairy Science, 2024, 107(3): 1485-1499.
[51]
VANLIERDE A, SOYEURT H, GENGLER N, COLINET F G, FROIDMONT E, KREUZER M, GRANDL F, BELL M, LUND P, OLIJHOEK D W, et al. Short communication: Development of an equation for estimating methane emissions of dairy cows from milk Fourier transform mid-infrared spectra by using reference data obtained exclusively from respiration chambers. Journal of Dairy Science, 2018, 101(8): 7618-7624.

doi: S0022-0302(18)30440-5 pmid: 29753478
[52]
MANAFIAZAR G, ZIMMERMAN S, BASARAB J. Repeatability and variability of short-term spot measurement of methane and carbon dioxide emissions from beef cattle using GreenFeed Emissions Monitoring System. Canadian Journal of Animal Science, 2016: CJAS-2015-0190.
[53]
CAPUANO E, VAN DER VEER G, BOERRIGTER-EENLING R, ELGERSMA A, RADEMAKER J, STERIAN A, VAN RUTH S M. Verification of fresh grass feeding, pasture grazing and organic farming by cows farm milk fatty acid profile. Food Chemistry, 2014, 164: 234-241.

doi: 10.1016/j.foodchem.2014.05.011 pmid: 24996329
[54]
ESKILDSEN C E, RASMUSSEN M A, ENGELSEN S B, LARSEN L B, POULSEN N A, SKOV T. Quantification of individual fatty acids in bovine milk by infrared spectroscopy and chemometrics: Understanding predictions of highly collinear reference variables. Journal of Dairy Science, 2014, 97(12): 7940-7951.

doi: 10.3168/jds.2014-8337 pmid: 25306267
[55]
WANG Q Y, HULZEBOSCH A, BOVENHUIS H. Genetic and environmental variation in bovine milk infrared spectra. Journal of Dairy Science, 2016, 99(8): 6793-6803.

doi: S0022-0302(16)30248-X pmid: 27179856
[1] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[2] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[3] SU YuanYuan,ZHANG DeQuan,GU MingHui,ZHANG ChunJuan,LI ShaoBo,ZHENG XiaoChun,CHEN Li. Characterization of Chilled Mutton by ATP from Different Sources [J]. Scientia Agricultura Sinica, 2022, 55(19): 3841-3853.
[4] TAO Bu, QI YongZhi, QU Yun, CAO ZhiYan, ZHAO XuSheng, ZHEN WenChao. Construction and Verification of Fusarium Head Blight Prediction Model in Haihe Plain Based on Boosted Regression Tree [J]. Scientia Agricultura Sinica, 2021, 54(18): 3860-3870.
[5] LIU YanXia,WANG ZhenYu,ZHENG XiaoChun,ZHU YaoDi,CHEN Li,ZHANG DeQuan. Prediction of Center Temperature of Beijing Roast Duck Based on Quality Index [J]. Scientia Agricultura Sinica, 2020, 53(8): 1655-1663.
[6] ZHANG HaiLiang,LIU AoXing,MI SiYuan,LI Xiang,LUO HanPeng,YAN XinYi,WANG YaChun. A Review on Longevity Trait in Dairy Cattle Breeding [J]. Scientia Agricultura Sinica, 2020, 53(19): 4070-4082.
[7] XIANG FangLin,LI XinGe,MA JiFeng,LIU XiaoJun,TIAN YongChao,ZHU Yan,CAO WeiXing,CAO Qiang. Using Canopy Time-Series Vegetation Index to Predict Yield of Winter Wheat [J]. Scientia Agricultura Sinica, 2020, 53(18): 3679-3692.
[8] FU LiXia,MA Tao,DIAO QiYu,CHENG ShuRu,SONG YaZhe,SUN ZhuoLin. Establishment of a Prediction Model of Metabolizable Protein of Concentrate for Mutton Sheep [J]. Scientia Agricultura Sinica, 2019, 52(3): 539-549.
[9] ZHOU Yan, DONG LiFeng, DENG KaiDong, XU GuiShan, DIAO QiYu. Development of Models of Methane Emissions from Growing Sheep [J]. Scientia Agricultura Sinica, 2019, 52(10): 1797-1806.
[10] TAN ChangWei, DU Ying, TONG Lu, ZHOU Jian, LUO Ming, YAN WeiWei, CHEN Fei. Comparison of the Methods for Predicting Wheat Yield Based on Satellite Remote Sensing Data at Anthesis [J]. Scientia Agricultura Sinica, 2017, 50(16): 3101-3109.
[11] WANG Hui, SUN Qi, LIU Lu, ZHANG Shu-Wen, DUAN Yu-Quan, Lu Jia-Ping . Establishment and Test of Prediction Model for UHT Milk Shelf Life [J]. Scientia Agricultura Sinica, 2013, 46(3): 586-594.
[12] LIANG Guang-Hua, DENG Min, LIU Xian-Xia, GU Xin-Li, GAO Shu, XU Lei. A Study on the Impact of Reproductive Hormones in Serum by Using Fertility-Promoting Powder for Treating Infertility Caused by Persistent Corpus Luteum and Ovary Sandstill of Dairy Cattle [J]. Scientia Agricultura Sinica, 2012, 45(15): 3182-3188.
[13] XIONG Ben-Hai, LUO Qing-Yao, PANG Zhi-Hong, YANG Liang, YANG Lu. Precise Calculation System of Total Mixed Ration for Lactating Cow [J]. Scientia Agricultura Sinica, 2012, 45(14): 2948-2958.
[14] XIAO Jian-Hua, HU Yu-Long, FAN Fu-Xiang, MA Hai-Kun, WANG Hong-Bin. Contruction of a Decision Support System for Dairy Cattle Breeding [J]. Scientia Agricultura Sinica, 2012, 45(10): 2012-2021.
[15] XIONG Ben-hai,MA Yi,LUO Qing-yao,PANG Zhi-hong,DENG Wen
. Study on Lactation Curve Models of Chinese Holstein for the Third Parity
[J]. Scientia Agricultura Sinica, 2011, 44(2): 402-408 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!