Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (9): 1719-1734.doi: 10.3864/j.issn.0578-1752.2025.09.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Multi-Angle Imaging and Machine Learning Approaches for Accurate Rice Leaf Area Estimation

WANG AiDong1(), LI RuiJie1,2(), FENG XiangQian1,2, HONG WeiYuan1, LI ZiQiu1, ZHANG XiaoGuo1, WANG DanYing1, CHEN Song1()   

  1. 1 China National Rice Research Institute/State Key Laboratory of Rice Biology and Breeding, Hangzhou 311400
    2 College of Agriculture, Yangtze University, Jingzhou 434025, Hubei
  • Received:2024-09-30 Accepted:2024-12-29 Online:2025-05-08 Published:2025-05-08
  • Contact: CHEN Song

Abstract:

【Objective】 Rice leaf area is a critical physiological metric that indicates photosynthetic efficiency, energy conversion, and dry matter accumulation capacity. This study aimed to develop a simple and efficient rice leaf area imaging system and prediction method, so as to provide a theoretical foundation and technical support for rapid and accurate leaf area measurement.【Method】 The study utilized representative rice varieties—Xiushui 134 (indica), Huanghuazhan (japonica), and Yongyou 1540 (indica-japonica hybrid)—as experimental materials. Leaf area data were collected from the aboveground parts during critical growth periods, and both flat-overhead-view and side-view images were captured. Using the PlantScreen high-throughput modular plant phenotyping platform, morphological and color feature information was extracted. Based on these data, various feature selection methods(Pearson correlation coefficient, maximal information coefficient (MIC), and recursive feature elimination (RFE)) combined with machine learning models (support vector regression (SVR), random forest regression (RFR), and XGBoost) and deep learning models (ResNet50, AlexNet, VGG, and SeNet) were employed to develop a simplified and efficient rice leaf area prediction model.【Result】 (1) An imaging approach that integrated flat-overhead and multi-angle side views significantly outperformed single-view methods for leaf area prediction, with R² values of 0.76-0.82 and coefficients of variation (CV) of 5.5%-13.7%, compared with R² values of 0.51-0.78 and CVs of 9.7%-27.5% for single views. The optimal system used one flat-overhead-view and one side-view image, achieving R² = 0.79, root mean square error (RMSE) = 95.3, mean absolute error (MAE) = 77.02, and CV = 6.5%. (2) Using MIC algorithm for key feature selection combined with the random forest regression model achieved excellent results (= 0.84, RMSE = 81.8, and MAE = 63.3), noticeably outperforming other machine learning models. The deep learning model SeNet (R2 = 0.80, RMSE = 98.1, and MAE = 74.7) outperformed traditional ResNet50 and AlexNet models but showed no significant advantage over the MIC-RFR model. (3) Feature analysis indicated that the projected area and plant height from side-view images, as well as leaf perimeter and green-yellow characteristics from flat-overhead-view images, significantly contributed to leaf area prediction. The contribution of the side-view projected area (+117.4) was substantially greater than that of other features (ranging from 1.48 to 18.87).【Conclusion】 This study employed a simple and efficient leaf area prediction imaging system (one flat-overhead-view combined with one side-view image), integrated with the MIC-RFR model, to meet the high-precision and stable prediction requirements for individual rice leaf area. This method provided a powerful tool and technical support for precision agriculture and crop breeding.

Key words: multi-angle RGB image, morphological feature, color feature, leaf area prediction, machine learning, rice

Fig. 1

Schematic diagram of the study area"

Fig. 2

Technology roadmap"

Table 1

Flat-overhead and side photo features of multi-angle image background culling"

高通量模块化植物表型组平台 High-throughput modular plant phenotyping platform
形态学特征 Morpho feature 颜色特征 Color feature
俯拍图像 FP 侧拍图像 SP 颜色 Color 展示 Show
投影面积 Area 投影面积 Area RGB1
叶周长 Perimeter 叶周长 Perimeter RGB2
紧密度 Compactness 紧密度 Compactness RGB3
植株圆度 Roundness 植株高度 Height RGB4
植株旋转质量对称 RMS 植株宽度 Width RGB5
偏心率 Eccentricity RGB6
叶片细长度 SOL RGB7
各向同性 Isotropy RGB8
RGB9

Fig. 3

Changes in LA of three rice varieties at different growth stages In the figure, RS, TS-E, TS-M, TS-L, PI, FS, MG-M, and MS represent Regreening Stage (14 days after transplanting), Tillering Stage - Early (32 days after transplanting), Tillering Stage - Middle (42 days after transplanting), Tillering Stage - Late (53 days after transplanting), Panicle Initiation (68 days after transplanting), Full Heading Stage (76 days after transplanting), Mid Grain-filling Stage (87 days after transplanting), and Maturity Stage (93 days after transplanting), respectively"

Table 2

LA inversion accuracy results from different shooting angles"

组合 Combination 模型 Model 决定系数 R2 均方根误差 RMSE 平均绝对误差 MAE 变异系数 CV (%)
FP SVR 0.51 147.3 108.1 27.5
RF 0.69 113.9 91.7 9.7
XGBoost 0.68 116.1 92.3 15.8
SP SVR 0.71 107.8 81.4 16.6
RF 0.78 92.5 73.5 10.4
XGBoost 0.73 107.4 81.6 13.7
FP+SP SVR 0.76 104.2 80.7 13.7
RF 0.82 88.2 69.1 5.5
XGBoost 0.76 96.4 73.4 9.2

Fig. 4

LA inversion accuracy at different shooting angles"

Table 3

Evaluation of LA inversion accuracy under different shooting angle combinations"

组合 Combination 决定系数 R2 均方根误差 RMSE 平均绝对误差 MAE 变异系数 CV (%)
FP+1SP(n=40) 0.79 95.30 77.02 6.5
FP+2SP(n=60) 0.80 92.70 72.41 8.4
FP+3SP(n=40) 0.78 95.84 75.86 9.8
FP+4SP(n=10) 0.82 88.20 69.10 5.5

Fig. 5

LA inversion accuracy diagram with different shooting angles The same lowercase letter indicates no significant difference between different image combinations (P>0.05)"

Fig. 6

Feature selection result"

Table 4

Based on the combination of FP+1SP images the accuracy of LA inversion with different feature selections"

特征选择 Feature selection 模型 Model 决定系数 R2 均方根误差 RMSE 平均绝对误差 MAE 变异系数 CV (%)
Full Feature SVR 0.78 97.9 78.4 11.8
RF 0.79 95.4 76.7 4.6
XGBoost 0.78 96.0 76.8 13.5
Pearson SVR 0.77 92.1 71.9 27.5
RF 0.79 102.9 91.7 9.7
XGBoost 0.79 94.2 75.0 8.0
MIC SVR 0.82 85.2 67.1 7.2
RF 0.84 81.8 63.3 7.4
XGBoost 0.80 96.6 73.4 5.8
RFE SVR 0.81 93.3 69.1 5.7
RF 0.82 90.7 72.7 7.1
XGBoost 0.81 92.9 74.8 8.8

Table 5

Based on the combination of FP+1SP images the accuracy of LA inversion with different deep learning models"

模型
Model
原始 Original 掩膜 Eye masked
决定系数 R2 均方根误差 RMSE 平均绝对误差 MAE 决定系数 R2 均方根误差 RMSE 平均绝对误差 MAE
ResNet50 0.73 105.9 84.47 0.76 103.2 80.78
AlexNet 0.75 105.3 84.66 0.76 102.5 80.46
VGG 0.77 102.3 77.43 0.78 100.4 80.20
SeNet 0.76 103.2 80.83 0.80 98.3 73.73

Fig. 7

VIF values of image features from four angles in the side camera The four oblique angles are 0°, 90°, 180°, and 270°. When VIF≥10, it indicates severe multicollinearity among features"

Fig. 8

Analysis of the importance of key features a and b represent the SHAP analysis results based on Random Forest Regression, while c and d show the correlation between flat-overhead and side projection areas and LA (leaf area)"

[1]
王伟康, 张嘉懿, 汪慧, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 基于固定翼无人机多光谱影像的水稻长势关键指标无损监测. 中国农业科学, 2023, 56(21): 4175-4191. doi: 10.3864/j.issn.0578-1752.2023.21.004.
WANG W K, ZHANG J Y, WANG H, CAO Q, TIAN Y C, ZHU Y, CAO W X, LIU X J. Non-destructive monitoring of rice growth key indicators based on fixed-wing UAV multispectral images. Scientia Agricultura Sinica, 2023, 56(21): 4175-4191. doi: 10.3864/j.issn.0578-1752.2023.21.004. (in Chinese)
[2]
FANG H L, BARET F, PLUMMER S, SCHAEPMAN-STRUB G. An overview of global leaf area index (LAI): methods, products, validation, and applications. Reviews of Geophysics, 2019, 57(3): 739-799.
[3]
刘帅兵, 金秀良, 冯海宽, 聂臣巍, 白怡, 余汛. 基于无人机多源遥感的玉米LAI垂直分布估算. 农业机械学报, 2023, 54(5): 181-193, 287.
LIU S B, JIN X L, FENG H K, NIE C W, BAI Y, YU X. Vertical distribution estimation of maize LAI using UAV multi-source remote sensing. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(5): 181-193, 287. (in Chinese)
[4]
CASADESÚS J, VILLEGAS D. Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding. Journal of Integrative Plant Biology, 2014, 56(1): 7-14.

doi: 10.1111/jipb.12117
[5]
BLANCON J, BUET C, DUBREUIL P, TIXIER M H, BARET F, PRAUD S. Maize green leaf area index dynamics: Genetic basis of a new secondary trait for grain yield in optimal and drought conditions. Theoretical and Applied Genetics, 2024, 137(3): 68.

doi: 10.1007/s00122-024-04572-6 pmid: 38441678
[6]
FU H Y, LU J N, CHEN J F, WANG W, CUI G X, SHE W. Influence of structure and texture feature on retrieval of ramie leaf area index. Agronomy, 2023, 13(7): 1690.
[7]
YUAN W S, MENG Y, LI Y, JI Z G, KONG Q M, GAO R, SU Z B. Research on rice leaf area index estimation based on fusion of texture and spectral information. Computers and Electronics in Agriculture, 2023, 211: 108016.
[8]
谷晓博, 程智楷, 周智辉, 常甜, 李汶龙, 杜娅丹. 基于特征降维和机器学习的覆膜冬小麦LAI遥感反演. 农业机械学报, 2023, 54(6): 148-157, 167.
GU X B, CHENG Z K, ZHOU Z H, CHANG T, LI W L, DU Y D. Remote sensing inversion of film-mulched winter wheat LAI based on feature dimension reduction and machine learning. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 148-157, 167. (in Chinese)
[9]
REES W G, GOLUBEVA E I, TUTUBALINA O V, ZIMIN M V, DERKACHEVA A A. Relation between leaf area index and NDVI for subarctic deciduous vegetation. International Journal of Remote Sensing, 2020, 41(22): 8573-8589.
[10]
ZHANG Y, JIANG Y Y, XU B, YANG G J, FENG H K, YANG X D, YANG H, LIU C B, CHENG Z D, FENG Z H. Study on the estimation of leaf area index in rice based on UAV RGB and multispectral data. Remote Sensing, 2024, 16(16): 3049.
[11]
ZHANG W, LI Z J, PU Y, ZHANG Y T, TANG Z J, FU J Y, XU W J, XIANG Y Z, ZHANG F C. Estimation of the leaf area index of winter rapeseed based on hyperspectral and machine learning. Sustainability, 2023, 15(17): 12930.
[12]
QIN G X, WU J, LI C B, MENG Z Y. Comparison of the hybrid of radiative transfer model and machine learning methods in leaf area index of grassland mapping. Theoretical and Applied Climatology, 2024, 155(4): 2757-2773.
[13]
MANSARAY L R, WANG F M, KANU A S, YANG L B. Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models. Geocarto International, 2022, 37(5): 1225-1236.
[14]
石浩磊, 曹红霞, 张伟杰, 朱珊, 何子建, 张泽. 基于无人机多光谱的棉花多生育期叶面积指数反演. 中国农业科学, 2024, 57(1): 80-95. doi: 10.3864/j.issn.0578-1752.2024.01.007.
SHI H L, CAO H X, ZHANG W J, ZHU S, HE Z J, ZHANG Z. Leaf area index inversion of cotton based on drone multi-sdpectral and multiple growth stages. Scientia Agricultura Sinica, 2024, 57(1): 80-95. doi: 10.3864/j.issn.0578-1752.2024.01.007. (in Chinese)
[15]
史丰智, 王瑞燕, 李玉环, 闫宏, 张晓鑫. LAI无人机多光谱遥感估测及其在盐渍土改良中的应用. 中国农业科学, 2020, 53(9): 1795-1805. doi: 10.3864/j.issn.0578-1752.2020.09.008.
SHI F Z, WANG R Y, LI Y H, YAN H, ZHANG X X. LAI estimation based on multi-spectral remote sensing of UAV and its application in saline soil improvement. Scientia Agricultura Sinica, 2020, 53(9): 1795-1805. doi: 10.3864/j.issn.0578-1752.2020.09.008. (in Chinese)
[16]
周晓雪, 李楠, 潘耀忠, 孙莉昕. 人工蜂群算法优化SVR的叶面积指数反演. 遥感学报, 2022, 26(4): 766-780.
ZHOU X X, LI N, PAN Y Z, SUN L X. Optimized SVR based on artificial bee colony algorithm for leaf area index inversion. National Remote Sensing Bulletin, 2022, 26(4): 766-780. (in Chinese)
[17]
APOLO-APOLO O E, PÉREZ-RUIZ M, MARTÍNEZ-GUANTER J, EGEA G. A mixed data-based deep neural network to estimate leaf area index in wheat breeding trials. Agronomy, 2020, 10(2): 175.
[18]
LIU S B, JIN X L, NIE C W, WANG S Y, YU X, CHENG M H, SHAO M C, WANG Z X, TUOHUTI N, BAI Y, LIU Y D. Estimating leaf area index using unmanned aerial vehicle data: Shallow vs. deep machine learning algorithms. Plant Physiology, 2021, 187(3): 1551-1576.
[19]
CASTRO-VALDECANTOS P, APOLO-APOLO O E, PÉREZ-RUIZ M, EGEA G. Leaf area index estimations by deep learning models using RGB images and data fusion in maize. Precision Agriculture, 2022, 23(6): 1949-1966.
[20]
李云霞, 马浚诚, 刘红杰, 张领先. 基于RGB图像与深度学习的冬小麦田间长势参数估算系统. 农业工程学报, 2021, 37(24): 189-198.
LI Y X, MA J C, LIU H J, ZHANG L X. Field growth parameter estimation system of winter wheat using RGB digital images and deep learning. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(24): 189-198. (in Chinese)
[21]
WANG Z B, MA Y K, ZHANG Y N. Review of pixel-level remote sensing image fusion based on deep learning. Information Fusion, 2023, 90: 36-58.
[22]
XU K, ZHANG J C, LI H M, CAO W X, ZHU Y, JIANG X P, NI J. Spectrum- and RGB-D-based image fusion for the prediction of nitrogen accumulation in wheat. Remote Sensing, 2020, 12(24): 4040.
[23]
杭艳红, 苏欢, 于滋洋, 刘焕军, 官海翔, 孔繁昌. 结合无人机光谱与纹理特征和覆盖度的水稻叶面积指数估算. 农业工程学报, 2021, 37(9): 64-71.
HANG Y H, SU H, YU Z Y, LIU H J, GUAN H X, KONG F C. Estimation of rice leaf area index combining UAV spectrum, texture features and vegetation coverage. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 64-71. (in Chinese)
[24]
张东彦, 韩宣宣, 林芬芳, 杜世州, 张淦, 洪琪. 基于多源无人机影像特征融合的冬小麦LAI估算. 农业工程学报, 2022, 38(9): 171-179.
ZHANG D Y, HAN X X, LIN F F, DU S Z, ZHANG G, HONG Q. Estimation of winter wheat LAI based on multi-source UAV image feature fusion. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 171-179. (in Chinese)
[25]
WANG X W, LIU J, LIU G X. Diseases detection of occlusion and overlapping tomato leaves based on deep learning. Frontiers in Plant Science, 2021, 12: 792244.
[26]
FAN J C, ZHANG Y, WEN W L, GU S H, LU X J, GUO X Y. The future of Internet of Things in agriculture: Plant high-throughput phenotypic platform. Journal of Cleaner Production, 2021, 280: 123651.
[27]
田罗, 屈永华, LAURI K, ILKKA K, JANNE H. 考虑目标光谱差异的机载离散激光雷达叶面积指数反演. 遥感学报, 2020, 24(12): 1450-1463.
TIAN L, QU Y H, LAURI K, ILKKA K, JANNE H. Estimation of forest leaf area index based on spectrally corrected airborne LiDAR pulse penetration index by intensity of point cloud. Journal of Remote Sensing, 2020, 24(12): 1450-1463. (in Chinese)
[28]
ROSSI R, LEOLINI C, COSTAFREDA-AUMEDES S, LEOLINI L, BINDI M, ZALDEI A, MORIONDO M. Performances evaluation of a low-cost platform for high-resolution plant phenotyping. Sensors, 2020, 20(11): 3150.
[29]
PAVICIC M, MOUHU K, WANG F, BILICKA M, CHOVANČEK E, HIMANEN K. Genomic and phenomic screens for flower related RING type ubiquitin E3 ligases in Arabidopsis. Frontiers in Plant Science, 2017, 8: 416.
[30]
臧少龙, 刘淋茹, 高越之, 吴珂, 贺利, 段剑钊, 宋晓, 冯伟. 基于无人机影像多时相的小麦品种氮效率分类识别. 中国农业科学, 2024, 57(9): 1687-1708. doi: 10.3864/j.issn.0578-1752.2024.09.006.
ZANG S L, LIU L R, GAO Y Z, WU K, HE L, DUAN J Z, SONG X, FENG W. Classification and identification of nitrogen efficiency of wheat varieties based on UAV multi-temporal images. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708. doi: 10.3864/j.issn.0578-1752.2024.09.006. (in Chinese)
[31]
WU S, DENG L, GUO L J, WU Y J. Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery. Plant Methods, 2022, 18(1): 68.

doi: 10.1186/s13007-022-00899-7 pmid: 35590377
[32]
HUANG F, LI Y M, LIU Z X, GONG L, LIU C L. A method for calculating the leaf area of pak choi based on an improved mask R-CNN. Agriculture, 2024, 14(1): 101.
[33]
HUANG X, LIN D, MAO X M, ZHAO Y. Multi-source data fusion for estimating maize leaf area index over the whole growing season under different mulching and irrigation conditions. Field Crops Research, 2023, 303: 109111.
[34]
冯子恒, 宋莉, 张少华, 井宇航, 段剑钊, 贺利, 尹飞, 冯伟. 基于无人机多光谱和热红外影像信息融合的小麦白粉病监测. 中国农业科学, 2022, 55(5): 890-906. doi: 10.3864/j.issn.0578-1752.2022.05.005.
FENG Z H, SONG L, ZHANG S H, JING Y H, DUAN J Z, HE L, YIN F, FENG W. Wheat powdery mildew monitoring based on information fusion of multi-spectral and thermal infrared images acquired with an unmanned aerial vehicle. Scientia Agricultura Sinica, 2022, 55(5): 890-906. doi: 10.3864/j.issn.0578-1752.2022.05.005. (in Chinese)
[35]
YAMAGUCHI T, TANAKA Y, IMACHI Y, YAMASHITA M, KATSURA K. Feasibility of combining deep learning and RGB images obtained by unmanned aerial vehicle for leaf area index estimation in rice. Remote Sensing, 2021, 13(1): 84.
[36]
GAN Y, WANG Q, MATSUZAWA T, SONG G M, IIO A. Multivariate regressions coupling colorimetric and textural features derived from UAV-based RGB images can trace spatiotemporal variations of LAI well in a deciduous forest. International Journal of Remote Sensing, 2023, 44(15): 4559-4577.
[37]
LU N, ZHOU J, HAN Z X, LI D, CAO Q, YAO X, TIAN Y C, ZHU Y, CAO W X, CHENG T. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods, 2019, 15(1): 17.
[38]
LIANG Y Y, SUN Y K, KOU W L, XU W H, WANG J, WANG Q H, WANG H, LU N. Rubber tree recognition based on UAV RGB multi-angle imagery and deep learning. Drones, 2023, 7(9): 547.
[39]
WANG Q, PANG Y, JIA W W, ZHANG H W, WANG C Y. Effective and universal pre-processing for multi-angle CHRIS/PROBA images. Journal of the Indian Society of Remote Sensing, 2021, 49(7): 1581-1591.
[40]
DAS CHOUDHURY S, SAMAL A, AWADA T. Leveraging image analysis for high-throughput plant phenotyping. Frontiers in Plant Science, 2019, 10: 508.

doi: 10.3389/fpls.2019.00508 pmid: 31068958
[41]
MÜLLER-LINOW M, PINTO-ESPINOSA F, SCHARR H, RASCHER U. The leaf angle distribution of natural plant populations: Assessing the canopy with a novel software tool. Plant Methods, 2015, 11: 11.
[42]
FAREK L, BENAIDJA A. Feature redundancy removal for text classification using correlated feature subsets. Computational Intelligence, 2024, 40(1): e12621.
[43]
CAI J, LUO J W, WANG S L, YANG S. Feature selection in machine learning: A new perspective. Neurocomputing, 2018, 300: 70-79.
[44]
ZHENG W, CHEN S, FU Z Y, ZHU F, YAN H, YANG J. Feature selection boosted by unselected features. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 4562-4574.
[45]
MOSLEMI A. A tutorial-based survey on feature selection: Recent advancements on feature selection. Engineering Applications of Artificial Intelligence, 2023, 126: 107136.
[46]
QIAO L, GAO D H, ZHAO R M, TANG W J, AN L L, LI M Z, SUN H. Improving estimation of LAI dynamic by fusion of morphological and vegetation indices based on UAV imagery. Computers and Electronics in Agriculture, 2022, 192: 106603.
[47]
JIANG N, YANG W N, DUAN L F, CHEN G X, FANG W, XIONG L Z, LIU Q. A nondestructive method for estimating the total green leaf area of individual rice plants using multi-angle color images. Journal of Innovative Optical Health Sciences, 2015, 8(2): 1550002.
[48]
DONG T F, LIU J G, SHANG J L, QIAN B D, MA B L, KOVACS J M, WALTERS D, JIAO X F, GENG X Y, SHI Y C. Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sensing of Environment, 2019, 222: 133-143.
[49]
JING L L, WEI X H, SONG Q, WANG F. Research on estimating rice canopy height and LAI based on LiDAR data. Sensors, 2023, 23(19): 8334.
[50]
GUO Z W, LIN H, CHEN S L, YANG Q P. Altitudinal patterns of leaf traits and leaf allometry in bamboo Pleioblastus amarus. Frontiers in Plant Science, 2018, 9: 1110.
[51]
GUO R C, XIE J L, ZHU J X, CHENG R F, ZHANG Y, ZHANG X H, GONG X J, ZHANG R W, WANG H, MENG F F. Improved 3D point cloud segmentation for accurate phenotypic analysis of cabbage plants using deep learning and clustering algorithms. Computers and Electronics in Agriculture, 2023, 211: 108014.
[52]
ZHANG X, SUN H, QIAO X X, YAN X B, FENG M C, XIAO L J, SONG X Y, ZHANG M J, SHAFIQ F, YANG W D, WANG C. Hyperspectral estimation of canopy chlorophyll of winter wheat by using the optimized vegetation indices. Computers and Electronics in Agriculture, 2022, 193: 106654.
[53]
CHENG J P, YANG H, QI J B, SUN Z D, HAN S Y, FENG H K, JIANG J Y, XU W M, LI Z H, YANG G J, ZHAO C J. Estimating canopy-scale chlorophyll content in apple orchards using a 3D radiative transfer model and UAV multispectral imagery. Computers and Electronics in Agriculture, 2022, 202: 107401.
[54]
RICCARDI M, MELE G, PULVENTO C, LAVINI A, D’ANDRIA R, JACOBSEN S E. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components. Photosynthesis Research, 2014, 120(3): 263-272.

doi: 10.1007/s11120-014-9970-2 pmid: 24442792
[55]
ZHANG Y H, TANG L, LIU X J, LIU L L, CAO W X, ZHU Y. Modeling dynamics of leaf color based on RGB value in rice. Journal of Integrative Agriculture, 2014, 13(4): 749-759.
[56]
HE J Y, ZHANG N, SU X, LU J S, YAO X, CHENG T, ZHU Y, CAO W X, TIAN Y C. Estimating leaf area index with a new vegetation index considering the influence of rice panicles. Remote Sensing, 2019, 11(15): 1809.
[57]
DE MAGALHÃES L P, ROSSI F. Use of indices in RGB and random forest regression to measure the leaf area index in maize. Agronomy, 2024, 14(4): 750.
[58]
HOUBORG R, MCCABE M F. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 135: 173-188.
[59]
LEE G Y, DAM T, FERDAUS M M, POENAR D P, DUONG V N. Unlocking the capabilities of explainable few-shot learning in remote sensing. Artificial Intelligence Review, 2024, 57(7): 169.
[60]
WANG D S, CAO W J, ZHANG F, LI Z L, XU S, WU X Y. A review of deep learning in multiscale agricultural sensing. Remote Sensing, 2022, 14(3): 559.
[61]
WEISS K, KHOSHGOFTAAR T M, WANG D D. A survey of transfer learning. Journal of Big Data, 2016, 3(1): 9.
[62]
LI X L, DONG Y Y, ZHU Y N, HUANG W J. Enhanced leaf area index estimation with CROP-DualGAN network. IEEE Transactions on Geoscience and Remote Sensing, 2022, 61: 5514610.
[1] WEI Ping, PAN JuZhong, ZHU DePing, SHAO ShengXue, CHEN ShanShan, WEI YaQian, GAO WeiWei. The Function of OsDREB1J in Regulating Rice Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(8): 1463-1478.
[2] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[3] WANG Bin, WU PengHao, LU JianWei, REN Tao, CONG RiHuan, LU ZhiFeng, LI XiaoKun. Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2025, 58(7): 1355-1365.
[4] XIONG JiaNi, LI ZongYue, HU HengLiang, GU TianYu, GAO Yan, PENG JiaShi. Influence of Expressing OsNRAMP5 Under the Driving of the OsLCT1 Promoter on Cadmium Migration to Rice Seeds [J]. Scientia Agricultura Sinica, 2025, 58(7): 1259-1268.
[5] JIN YiDan, HE NiQing, CHENG ZhaoPing, LIN ShaoJun, HUANG FengHuang, BAI KangCheng, ZHANG Tao, WANG WenXiao, YU MinXiang, YANG DeWei. Screening and Identification of Pigm-1 Interaction Proteins for Disease Resistance of Rice Blast [J]. Scientia Agricultura Sinica, 2025, 58(6): 1043-1051.
[6] JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong. Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1052-1064.
[7] XIAO ChangChun, WEI XinYu, ZENG YueHui, HUANG JianHong, XU XuMing. Accumulation Characteristics of Anthocyanins in Black Rice Under Different Sowing Dates and Its Relationship with Meteorological Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 890-906.
[8] XU YuanYuan, JIA DongSheng, BIN Yu, WEI TaiYun. PGRP6 Negatively Regulates Symbiotic Bacteria to Prevent the Transovarial Transmission of RDV in Nephotettix cincticeps [J]. Scientia Agricultura Sinica, 2025, 58(5): 907-917.
[9] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[10] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[11] LI Lu, XIE Zhuang, XIE KeYing, ZHANG Han, ZHAO ZhuoWen, XIANG AoNi, LI QiaoLong, LING YingHua, HE GuangHua, ZHAO FangMing. Construction of Single and Dual-Segment Substitution Lines from Rice CSSL-Z492 and Genetic Dissection of QTL for Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(3): 401-415.
[12] CAO ShiLiang, ZHANG JianGuo, YU Tao, YANG GengBin, LI WenYue, MA XueNa, SUN YanJie, HAN WeiBo, TANG Gui, SHAN DaPeng. Heterosis Groups Research in Maize Inbred Lines Based on Machine Learning [J]. Scientia Agricultura Sinica, 2025, 58(2): 203-213.
[13] LIU Jing, WANG Hong, ZHANG Lei, XIAO JiuJun, WU JianGao, GONG MingChong. Inversion of Nitrogen Content in Chili Pepper Leaves Based on Hyperspectral Analysis [J]. Scientia Agricultura Sinica, 2025, 58(2): 252-265.
[14] LÜ ShuWei, TANG Xuan, LI Chen. Research Progress on Seed Shattering of Rice [J]. Scientia Agricultura Sinica, 2025, 58(1): 1-9.
[15] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!