Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (7): 1397-1417.doi: 10.3864/j.issn.0578-1752.2025.07.012

• HORTICULTURE • Previous Articles     Next Articles

Genome-Wide Identification and Analysis of TPS Gene Family and Functional Verification of VvTPS4 in the Formation of Monoterpenes in Grape

YANG CaiLi(), LI YongZhou(), HE LiangLiang, SONG YinHua, ZHANG Peng, LIU ZhaoXian, LI PengHui, LIU SanJun()   

  1. Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009
  • Received:2024-09-09 Accepted:2024-10-18 Online:2025-04-08 Published:2025-04-08
  • Contact: LI YongZhou, LIU SanJun

Abstract:

【Objective】Based on grape genome information, this study identifies and analyzes the terpene synthase (TPS) gene family expression in grapes using bioinformatics methods. This research lays an important foundation for subsequent studies on the biological functions of VvTPSs and grape breeding. 【Method】The VvTPS gene family was identified using the protein sequences of Arabidopsis AtTPS gene family members and the reported Hidden Markov model (HMM) files PF01397 and PF03936. Various bioinformatics tools, including Expasy, Tbtools, MEME, MEGA, MCScanX, SPOMA, WoLF PSORT, and PlantCARE were used to analyze the physicochemical characteristics, phylogenetic tree, chromosomal distributions, gene structure, subcellular localization, secondary structure of protein, and cis-acting elements in the promoters of gape TPS family genes. Additionally, the expression profiles of TPS genes in two aromatic grape varieties Red Globe (neutral) and Muscat Hamburg (muscat) were analyzed using qPCR. The transgenic tomato overexpressed VvTPS4 was used to study its function in influencing the muscat aroma by metabolomics. 【Result】A total of 65 VvTPS gene family members were identified, encoding proteins ranging from 339 to 840 amino acids, with an average molecular mass of 64.13 kDa and theoretical isoelectric points of 4.93 to 7.65. Most members have 7 exon structures. Phylogenetic analysis classified the grape TPS genes into five subfamilies: TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g. Subcellular localization analysis indicated that most VvTPS proteins are localized in chloroplasts and cytoplasm, with 10 members from the TPS-g subfamily found in plastids. Promoter analysis revealed numerous cis-acting elements associated with responses to light, temperature, drought, hormones, and defense mechanisms. Of the 29 VvTPS genes cloned, most showed higher expression levels in the muscat-flavored grape variety compared to the non-aromatic variety. In transgenic tomatoes overexpressing VvTPS4, volatile monoterpenoids were significantly accumulated, with linalool levels increasing 20.73-fold and L-α-terpineol levels rising 14.55-fold compared to the wild type. Flavor characteristics analysis demonstrated these two compounds have floral aroma and are the main characteristic substances affecting the aroma of muscat fragrance.【Conclusion】Sixty-five VvTPS genes were identified in grapes, showing high conservation with some variations. Several TPS genes showed significantly expressed in muscat-flavored grape varieties. Overexpression of VvTPS4 led to a significant increase the accumulation of volatile monoterpenoids, which may play an essential role in developing the muscat aroma in grapes.

Key words: grape, TPS gene family, expression analysis, aroma, metabolomics

Table 1

Information about TPS gene family members of grape"

蛋白质
Protein
基因ID
Gene ID
长度
Length (aa)
分子量
MW (kDa)
等电点
pI
酸性氨基酸比例
Asp+Glu (%)
碱性氨基酸比例
Arg+Lys (%)
不稳定指数
Instability index
总平均亲水性
GRAVY
VvTPS1 VIT_00s0266g00010.t01 507 58.11 5.51 14.20 10.26 38.89 稳定Stable -0.274
VvTPS2 VIT_00s0266g00020.t01 487 55.90 5.87 13.55 10.88 40.98 不稳定Unstable -0.309
VvTPS3 VIT_00s0266g00070.t01 517 59.72 5.74 14.12 11.41 39.52 稳定Stable -0.341
VvTPS4 VIT_00s0271g00010.t01 492 56.48 5.53 14.43 10.77 40.33 不稳定Unstable -0.323
VvTPS5 VIT_00s0271g00030.t01 482 55.27 5.5 13.90 9.34 39.76 稳定Stable -0.3
VvTPS6 VIT_00s0271g00060.t01 577 66.27 5.77 13.34 9.71 43.3 不稳定Unstable -0.348
VvTPS7 VIT_00s0361g00060.t01 566 64.82 5.21 13.07 9.72 44.22 不稳定Unstable -0.196
VvTPS8 VIT_00s0372g00020.t01 406 46.55 5.65 13.30 9.85 36.91 稳定Stable -0.254
VvTPS9 VIT_00s0372g00040.t01 507 58.01 5.51 14.20 10.26 37.89 稳定Stable -0.274
VvTPS10 VIT_00s0372g00070.t01 645 74.07 5.83 12.25 9.46 40.03 不稳定Unstable -0.144
VvTPS11 VIT_00s0385g00010.t01 490 56.17 5.91 13.67 10.82 34.9 稳定Stable -0.284
VvTPS12 VIT_00s0385g00020.t01 508 58.19 5.65 14.76 11.02 35.13 稳定Stable -0.365
VvTPS13 VIT_00s0392g00060.t01 419 47.52 5.41 12.89 9.79 46.18 不稳定Unstable -0.158
VvTPS14 VIT_00s0450g00010.t01 840 96.05 5.83 12.74 10.48 50.92 不稳定Unstable -0.214
VvTPS15 VIT_00s0572g00010.t01 450 51.49 5.59 13.56 10.22 42.28 不稳定Unstable -0.288
VvTPS16 VIT_00s0572g00020.t01 507 58.06 5.56 14.00 10.26 38.38 稳定Stable -0.284
VvTPS17 VIT_00s0692g00020.t01 555 64.36 5.94 13.15 10.63 39.16 稳定Stable -0.346
VvTPS18 VIT_00s0724g00010.t01 517 61.02 5.89 14.31 12.38 48.11 不稳定Unstable -0.371
VvTPS19 VIT_00s0847g00020.t01 545 62.43 5.45 14.13 9.91 40.48 不稳定Unstable -0.316
VvTPS20 VIT_00s1319g00010.t01 832 95.67 5.75 12.86 9.86 41.75 不稳定Unstable -0.286
VvTPS21 VIT_00s2271g00010.t01 495 58.39 5.23 15.76 11.52 50.48 不稳定Unstable -0.427
VvTPS22 VIT_07s0151g01040.t01 828 94.39 6.21 12.44 11.35 45.81 不稳定Unstable -0.291
VvTPS23 VIT_07s0151g01070.t01 790 90.39 5.36 13.92 10.51 43.28 不稳定Unstable -0.308
VvTPS24 VIT_10s0116g00750.t01 817 94.37 5.84 13.10 10.53 43.66 不稳定Unstable -0.266
VvTPS25 VIT_12s0059g02710.t01 519 59.74 5.45 15.22 12.91 47.03 不稳定Unstable -0.446
VvTPS26 VIT_12s0059g02720.t01 388 44.99 5.36 15.21 12.37 42.38 不稳定Unstable -0.324
VvTPS27 VIT_12s0134g00020.t01 601 69.76 5.81 15.31 12.65 51.07 不稳定Unstable -0.397
VvTPS28 VIT_12s0134g00030.t01 579 67.09 6.04 15.20 13.47 47.6 不稳定Unstable -0.395
VvTPS29 VIT_13s0019g00060.t01 594 69.40 5.28 13.47 10.10 42.16 不稳定Unstable -0.307
VvTPS30 VIT_13s0067g00050.t01 585 68.49 5.86 14.36 12.14 46.96 不稳定Unstable -0.393
VvTPS31 VIT_13s0067g00130.t01 521 60.98 7.22 12.67 12.67 43.01 不稳定Unstable -0.343
VvTPS32 VIT_13s0067g00370.t01 590 68.87 5.62 14.07 11.19 44.69 不稳定Unstable -0.373
VvTPS33 VIT_13s0067g00380.t01 339 39.94 7.65 13.57 13.86 46.95 不稳定Unstable -0.476
VvTPS34 VIT_13s0067g03700.t01 566 66.05 5.23 15.02 11.48 48.26 不稳定Unstable -0.322
VvTPS35 VIT_13s0067g03740.t01 422 49.57 4.93 14.69 10.19 45.77 不稳定Unstable -0.263
VvTPS36 VIT_13s0067g03790.t01 593 69.40 5.44 13.49 10.62 41.55 不稳定Unstable -0.326
VvTPS37 VIT_13s0067g03830.t01 440 51.56 5.98 12.27 10.45 39.53 稳定Stable -0.322
VvTPS38 VIT_13s0084g00010.t01 551 64.65 5.29 15.61 11.43 44.85 不稳定Unstable -0.413
VvTPS39 VIT_18s0001g04050.t01 535 62.00 5.11 15.89 10.84 44.71 不稳定Unstable -0.278
VvTPS40 VIT_18s0001g04080.t01 627 72.75 5.16 16.27 11.16 47.2 不稳定Unstable -0.31
VvTPS41 VIT_18s0001g04120.t01 561 64.68 5.34 15.15 11.05 52.65 不稳定Unstable -0.354
VvTPS42 VIT_18s0001g04170.t01 515 59.92 5.33 15.34 11.46 46.65 不稳定Unstable -0.312
VvTPS43 VIT_18s0001g04220.t01 505 58.38 5.3 14.85 11.68 51.24 不稳定Unstable -0.416
VvTPS44 VIT_18s0001g04280.t01 555 64.37 5.46 15.14 11.71 49.39 不稳定Unstable -0.308
VvTPS45 VIT_18s0001g04780.t01 561 65.10 5.34 15.15 11.05 52.99 不稳定Unstable -0.37
VvTPS46 VIT_18s0001g04870.t01 555 64.53 5.6 14.95 11.89 50.54 不稳定Unstable -0.353
VvTPS47 VIT_18s0001g05230.t01 555 64.43 5.65 14.77 11.89 46.44 不稳定Unstable -0.349
VvTPS48 VIT_18s0001g05240.t01 561 65.13 5.52 14.62 11.23 55.08 不稳定Unstable -0.351
VvTPS49 VIT_18s0001g05290.t01 616 71.11 5.91 13.47 11.36 49.31 不稳定Unstable -0.254
VvTPS50 VIT_18s0001g05360.t01 368 42.57 6.37 12.77 11.68 40.84 不稳定Unstable -0.113
VvTPS51 VIT_18s0001g05430.t01 482 55.67 5.42 14.94 11.20 50.14 不稳定Unstable -0.382
VvTPS52 VIT_18s0001g05460.t01 586 67.92 5.68 14.16 11.26 48.87 不稳定Unstable -0.245
VvTPS53 VIT_18s0001g05470.t01 527 61.61 5.38 15.56 11.57 51.96 不稳定Unstable -0.326
VvTPS54 VIT_19s0014g01060.t01 559 64.02 5.51 14.13 11.27 47.23 不稳定Unstable -0.25
VvTPS55 VIT_19s0014g01070.t01 560 65.09 5.19 15.54 11.43 52.7 不稳定Unstable -0.343
VvTPS56 VIT_19s0014g02550.t01 595 69.06 5.32 15.13 11.60 43.87 不稳定Unstable -0.282
VvTPS57 VIT_19s0014g02580.t01 517 60.54 5.33 15.67 12.57 43.1 不稳定Unstable -0.3
VvTPS58 VIT_19s0014g02590.t01 561 64.99 5.07 15.86 11.05 44.53 不稳定Unstable -0.297
VvTPS59 VIT_19s0014g04800.t01 593 68.81 5.64 14.50 12.14 44.49 不稳定Unstable -0.37
VvTPS60 VIT_19s0014g04810.t01 559 64.70 5.33 15.03 11.99 46.25 不稳定Unstable -0.367
VvTPS61 VIT_19s0014g04900.t01 557 64.36 5.48 14.90 11.13 47.66 不稳定Unstable -0.295
VvTPS62 VIT_19s0014g04930.t01 557 64.32 5.52 14.54 10.77 46.28 不稳定Unstable -0.252
VvTPS63 VIT_19s0015g02070.t01 562 65.38 5.61 14.59 10.68 52.08 不稳定Unstable -0.327
VvTPS64 VIT_19s0085g00830.t01 826 93.75 5.91 12.71 10.90 47.51 不稳定Unstable -0.186
VvTPS65 VitviT2T_020264 422 48.89 5.31 14.93 10.66 49.07 不稳定Unstable -0.272

Table 2

Secondary structure and subcellular localization of grape TPS proteins"

蛋白质
Protein
α-螺旋
α-helix (%)
延伸链
Extended strand (%)
β-转角
β-turn (%)
无规则卷曲
Random coil (%)
亚细胞定位
Subcellular location
VvTPS1 72.58 3.35 3.35 20.71 叶绿体Chloroplast
VvTPS2 72.48 2.87 4.31 20.33 细胞核Nucleus
VvTPS3 70.60 4.45 4.26 20.70 细胞核Nucleus
VvTPS4 71.54 2.85 4.27 21.34 叶绿体Chloroplast
VvTPS5 73.03 3.94 4.77 18.26 叶绿体Chloroplast
VvTPS6 68.80 2.77 3.47 24.96 叶绿体Chloroplast
VvTPS7 69.43 3.36 3.18 24.03 细胞质Cytoplasm
VvTPS8 71.18 4.19 2.22 22.41 叶绿体Chloroplast
VvTPS9 74.56 2.76 3.55 19.13 叶绿体Chloroplast
VvTPS10 61.40 8.53 4.34 25.74 叶绿体Chloroplast
VvTPS11 64.29 5.10 3.47 27.14 叶绿体Chloroplast
VvTPS12 64.17 3.54 3.54 28.74 细胞质Cytoplasm
VvTPS13 74.94 0.48 3.10 21.48 细胞质Cytoplasm
VvTPS14 63.93 3.10 2.74 30.24 质膜Plasmalemma
VvTPS15 71.78 3.56 4.44 20.22 叶绿体Chloroplast
VvTPS16 73.96 3.16 3.75 19.13 叶绿体Chloroplast
VvTPS17 65.41 3.24 2.70 28.65 细胞核Nucleus
VvTPS18 69.44 2.71 2.51 25.34 叶绿体Chloroplast
VvTPS19 71.38 2.20 3.12 23.30 细胞质Cytoplasm
VvTPS20 58.17 5.53 3.37 32.93 细胞质Cytoplasm
VvTPS21 71.52 2.63 3.84 22.02 细胞质Cytoplasm
VvTPS22 57.49 5.43 4.23 32.85 细胞质Cytoplasm
VvTPS23 57.22 5.32 3.67 33.80 叶绿体Chloroplast
VvTPS24 56.18 6.24 3.55 34.03 细胞质Cytoplasm
VvTPS25 68.02 3.85 3.28 24.86 叶绿体Chloroplast
VvTPS26 63.66 4.12 2.32 29.90 叶绿体Chloroplast
VvTPS27 67.22 3.33 3.00 26.46 叶绿体Chloroplast
VvTPS28 68.05 2.76 3.63 25.56 线粒体Mitochondrion
VvTPS29 65.15 3.54 4.04 27.27 叶绿体Chloroplast
VvTPS30 66.67 4.62 3.59 25.13 线粒体Mitochondrion
VvTPS31 67.37 4.41 3.45 24.76 细胞质Cytoplasm
VvTPS32 66.95 2.88 3.56 26.61 叶绿体Chloroplast
VvTPS33 65.49 5.01 2.65 26.84 叶绿体Chloroplast
VvTPS34 67.67 3.18 3.89 25.27 叶绿体Chloroplast
VvTPS35 72.27 3.79 3.79 20.14 细胞质Cytoplasm
VvTPS36 65.60 3.88 3.20 27.32 叶绿体Chloroplast
VvTPS37 68.64 1.82 2.27 27.27 叶绿体Chloroplast
VvTPS38 70.42 3.45 3.45 22.69 细胞质Cytoplasm
VvTPS39 70.47 5.05 4.11 20.37 细胞质Cytoplasm
VvTPS40 68.90 4.78 2.55 23.76 内质网Endoplasmicreticulum
VvTPS41 67.91 5.35 3.57 23.17 内质网Endoplasmicreticulum
VvTPS42 67.77 5.05 3.69 23.50 细胞质Cytoplasm
VvTPS43 67.33 5.15 3.17 24.36 细胞核Nucleus
VvTPS44 69.19 4.14 3.96 22.70 细胞质Cytoplasm
VvTPS45 67.02 4.99 3.39 24.60 细胞核Nucleus
VvTPS46 68.83 4.32 3.24 23.60 细胞质Cytoplasm
VvTPS47 68.65 4.6 3.78 22.88 细胞质Cytoplasm
VvTPS48 67.74 4.63 3.21 24.42 细胞核Nucleus
VvTPS49 61.36 7.47 3.57 27.60 叶绿体Chloroplast
VvTPS50 73.10 2.99 2.45 21.47 质膜Plasmalemma
VvTPS51 69.71 3.94 4.15 22.20 线粒体Mitochondrion
VvTPS52 65.53 6.14 3.41 24.91 叶绿体Chloroplast
VvTPS53 73.62 4.17 3.23 18.98 叶绿体Chloroplast
VvTPS54 67.26 4.47 3.22 25.04 叶绿体Chloroplast
VvTPS55 67.68 4.82 3.21 24.29 细胞质Cytoplasm
VvTPS56 65.38 4.37 3.03 27.23 线粒体Mitochondrion
VvTPS57 66.92 4.45 3.09 25.53 细胞质Cytoplasm
VvTPS58 68.81 5.17 3.39 22.64 叶绿体Chloroplast
VvTPS59 66.95 5.90 3.04 24.11 细胞质Cytoplasm
VvTPS60 68.69 5.01 3.40 22.90 细胞质Cytoplasm
VvTPS61 70.38 4.85 3.41 21.36 叶绿体Chloroplast
VvTPS62 68.22 6.46 4.13 21.18 叶绿体Chloroplast
VvTPS63 68.51 5.16 3.02 23.31 细胞质Cytoplasm
VvTPS64 62.59 5.57 4.24 27.60 细胞核Nucleus
VvTPS65 72.99 3.55 3.32 20.14 细胞质Cytoplasm

Fig. 1

Phylogenetic tree analysis of the TPS proteins from 12 species Aco: A. comosus; Os: O. sativa; LiR: L. intermedia; Csi: C. limon; Ac: A. chinensis; Aa: A. arguta; At: A. thaliana; Pt: P. trichocarpa; Gh: G. hirsutum; Fa: F. ananassa; Fv: F. vesca; Md: M. domestica; Pp: P. persica; Vv: V. vinifera"

Fig. 2

Analysis of conserved motifs (A), conserved domain (B), and gene structure (C) analysis of grape TPS protein"

Fig. 3

Chromosomal localization of TPS family members (A) in grape and colinearity analysis (B) with apple and peache species"

Table 3

Ka/Ks value of VvTPSs"

基因对Gene pairs Ka Ks Ka/Ks
VvTPS25/MD17G0079700 0.423 1.805 0.235
VvTPS64/MD10G0181600 0.237 0.949 0.250
VvTPS61/MD11G0189300 0.277 1.412 0.196
VvTPS61/MD17G0079700 0.542 2.558 0.212
VvTPS59/MD03G0176900 0.297 1.161 0.255
VvTPS22/MD11G0231900 0.248 1.559 0.159
VvTPS22/MD03G0216300 0.271 2.019 0.134
VvTPS7/MD17G0078700 0.432 2.276 0.190
VvTPS9/MD05G0280700 0.271 1.216 0.223
VvTPS8/MD05G0280900 0.512 1.508 0.340
VvTPS27/ONI13020 0.592 1.868 0.317
VvTPS59/ONI13020 0.303 1.162 0.261
VvTPS59/ONI12956 0.319 1.025 0.311
VvTPS64/ONI11835 0.209 0.904 0.231
VvTPS59/ONI12905 0.324 1.696 0.191
VvTPS22/ONH93575 0.211 1.631 0.129
VvTPS7/ONI10138 0.312 1.133 0.275
VvTPS7/ONI13020 0.602 2.450 0.246
VvTPS8/ONI12958 0.664 1.766 0.376
VvTPS9/ONI12959 0.655 2.753 0.238
VvTPS12/ONI12902 0.595 2.069 0.287
VvTPS11/ONI12905 0.621 2.249 0.276
VvTPS9/ONI13050 0.657 2.950 0.223

Fig. 4

Analysis of cis-acting elements in promoters of VvTPSs"

Fig. 5

TPS gene expression heat maps of Victorian, Muscat hamburg, and Shine muscat grape fruits two weeks before (1), during (2), and two weeks after ripening (3)"

Fig. 6

Expression of VvTPSs in ripening grape fruits of different aroma types *:P<0.05;**:P<0.01;***:P<0.001;****:P<0.0001"

Fig. 7

Volatile metabolome analysis of tomato fruits A: Phenotype of transgenic tomatoes; B: Metabolome volatile substances; C: Differential monoterpenoid compounds content. 1: Linalool; 2: 6,6-dimethyl- Bicyclo[3.1.1]hept-2-ene-2-methanol; 3: L-Fenchone; 4: Limonene; 5: D-Fenchone; 6: trans-β-Ocimene; 7: D-Limonene; 8: (S)-4-Isopropenyl-1-methylcyclohexene; 9: α-Terpineol; 10: L-α-Terpineol"

Fig. 8

Analysis of volatile differential terpene compounds A: Volcano diagram of differentially volatile compounds; B: Radar map of differentially volatile compounds; C: KEGG enrichment analysis of differential compounds; D: Network diagram of the order of volatile compounds of OAV>1"

[1]
THOLL D. Biosynthesis and biological functions of terpenoids in plants. Advances in Biochemical Engineering/Biotechnology, 2015, 148: 63-106.
[2]
LORETO F, DICKE M, SCHNITZLER J P, TURLINGS T C J. Plant volatiles and the environment. Plant, Cell & Environment, 2014, 37(8): 1905-1908.
[3]
ZULAK K G, BOHLMANN J. Terpenoid biosynthesis and specialized vascular cells of conifer defense. Journal of Integrative Plant Biology, 2010, 52(1): 86-97.

doi: 10.1111/j.1744-7909.2010.00910.x
[4]
姜建福, 孙海生, 刘崇怀, 樊秀彩, 张颖. 2000年以来中国葡萄育种研究进展. 中外葡萄与葡萄酒, 2010(3): 60-65, 69.
JIANG J F, SUN H S, LIU C H, FAN X C, ZHANG Y. Research progress of grape breeding in China since 2000. Sino-Overseas Grapevine & Wine, 2010(3): 60-65, 69. (in Chinese)
[5]
王勇, 李玉玲, 孙锋, 伍国红, 骆强伟. 2010年以来中国葡萄育种研究进展. 中外葡萄与葡萄酒, 2021(6): 90-97.
WANG Y, LI Y L, SUN F, WU G H, LUO Q W. Research progress on grape breeding in China since 2010. Sino-Overseas Grapevine & Wine, 2021(6): 90-97. (in Chinese)
[6]
FENOLL J, MANSO A, HELLÍN P, RUIZ L, FLORES P. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chemistry, 2009, 114(2): 420-428.
[7]
TRAPP S C, CROTEAU R B. Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics, 2001, 158(2): 811-832.

doi: 10.1093/genetics/158.2.811 pmid: 11404343
[8]
DUDAREVA N, KLEMPIEN A, MUHLEMANN J K, KAPLAN I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 2013, 198(1): 16-32.

doi: 10.1111/nph.12145 pmid: 23383981
[9]
DEGENHARDT J, KÖLLNER T G, GERSHENZON J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 2009, 70(15/16): 1621-1637.
[10]
MERCKE P, KAPPERS I F, VERSTAPPEN F W A, VORST O, DICKE M, BOUWMEESTER H J. Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiology, 2004, 135(4): 2012-2024.

doi: 10.1104/pp.104.048116 pmid: 15310834
[11]
LANDMANN C, FINK B, FESTNER M, DREGUS M, ENGEL K H, SCHWAB W. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Archives of Biochemistry and Biophysics, 2007, 465(2): 417-429.

doi: 10.1016/j.abb.2007.06.011 pmid: 17662687
[12]
CHEN F, THOLL D, BOHLMANN J, PICHERSKY E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the Kingdom. Plant Journal, 2011, 66(1): 212-229.
[13]
CHEN F, THOLL D, D’AURIA J C, FAROOQ A, PICHERSKY E, GERSHENZON J. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. The Plant Cell, 2003, 15(2): 481-494.
[14]
HE J, FANDINO R A, HALITSCHKE R, LUCK K, KÖLLNER T G, MURDOCK M H, RAY R, GASE K, KNADEN M, BALDWIN I T, SCHUMAN M C. An unbiased approach elucidates variation in (S)-(+)-linalool, a context-specific mediator of a tri-trophic interaction in wild tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29): 14651-14660.
[15]
NIEUWENHUIZEN N J, GREEN S A, CHEN X Y, BAILLEUL E J D, MATICH A J, WANG M Y, ATKINSON R G. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Plant Physiology, 2013, 161(2): 787-804.

doi: 10.1104/pp.112.208249 pmid: 23256150
[16]
HUANG X Z, XIAO Y T, KÖLLNER T G, JING W X, KOU J F, CHEN J Y, LIU D F, GU S H, WU J X, ZHANG Y J, GUO Y Y. The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores. Plant, Cell & Environment, 2018, 41(1): 261-274.
[17]
MAGNARD J L, BONY A R, BETTINI F, CAMPANARO A, BLEROT B, BAUDINO S, JULLIEN F. Linalool and linalool nerolidol synthases in roses, several genes for little scent. Plant Physiology and Biochemistry, 2018, 127: 74-87.
[18]
MARTIN D M, BOHLMANN J. Identification of Vitis vinifera (-)-alpha-terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Phytochemistry, 2004, 65(9): 1223-1229.
[19]
LIN J, MASSONNET M, CANTU D. The genetic basis of grape and wine aroma. Horticulture Research, 2019, 6: 81.

doi: 10.1038/s41438-019-0163-1 pmid: 31645942
[20]
MATARESE F, SCALABRELLI G, ONOFRIO C D. Analysis of the expression of terpene synthase genes in relation to aroma content in two aromatic Vitis vinifera varieties. Functional Plant Biology, 2013, 40(6): 552-565.
[21]
WANG W, FENG J, WEI L L, KHALIL-UR-REHMAN M, NIEUWENHUIZEN N J, YANG L N, ZHENG H, TAO J M. Transcriptomics integrated with free and bound terpenoid aroma profiling during “shine Muscat” (Vitis labrusca × V. vinifera) grape berry development reveals coordinate regulation of MEP pathway and terpene synthase gene expression. Journal of Agricultural and Food Chemistry, 2021, 69(4): 1413-1429.
[22]
LI W, LI W F, YANG S J, MA Z H, ZHOU Q, MAO J, HAN S Y, CHEN B H. Transcriptome and metabolite conjoint analysis reveals that exogenous methyl jasmonate regulates monoterpene synthesis in grape berry skin. Journal of Agricultural and Food Chemistry, 2020, 68(18): 5270-5281.

doi: 10.1021/acs.jafc.0c00476 pmid: 32338508
[23]
PARKER M T, ZHONG Y, DAI X B, WANG S L, ZHAO P. Comparative genomic and transcriptomic analysis of terpene synthases in Arabidopsis and Medicago. IET Systems Biology, 2014, 8(4): 146-153.
[24]
FALARA V, AKHTAR T A, NGUYEN T T H, SPYROPOULOU E A, BLEEKER P M, SCHAUVINHOLD I, MATSUBA Y, BONINI M E, SCHILMILLER A L, LAST R L, SCHUURINK R C, PICHERSKY E. The tomato terpene synthase gene family. Plant Physiology, 2011, 157(2): 770-789.

doi: 10.1104/pp.111.179648 pmid: 21813655
[25]
CHEN H, KÖLLNER T G, LI G L, WEI G, CHEN X L, ZENG D L, QIAN Q, CHEN F. Combinatorial evolution of a terpene synthase gene cluster explains terpene variations in Oryza. Plant Physiology, 2020, 182(1): 480-492.
[26]
石森堡, 谯正林, 王凤仪, 胡慧贞, 陈龙清. 金鱼草TPS基因家族的全基因组鉴定和表达模式分析. 西南农业学报, 2023, 36(5): 1046-1056.
SHI S B, QIAO Z L, WANG F Y, HU H Z, CHEN L Q. Genome-wide identification and expression pattern analysis of terpenoid synthase (TPS) gene family in snapdragon (Antirrhinum majus L.). Southwest China Journal of Agricultural Sciences, 2023, 36(5): 1046-1056. (in Chinese)
[27]
LIU J Y, HUANG F, WANG X, ZHANG M, ZHENG R, WANG J, YU D Y. Genome-wide analysis of terpene synthases in soybean: Functional characterization of GmTPS3. Gene, 2014, 544(1): 83-92.

doi: 10.1016/j.gene.2014.04.046 pmid: 24768723
[28]
MARTIN D M, AUBOURG S, SCHOUWEY M B, DAVIET L, SCHALK M, TOUB O, LUND S T, BOHLMANN J. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biology, 2010, 10: 226.

doi: 10.1186/1471-2229-10-226 pmid: 20964856
[29]
LI M Y, LI X Y, ZHOU J, SUN Y, DU J G, WANG Z, LUO Y, ZHANG Y, CHEN Q, WANG Y, LIN Y X, ZHANG Y T, HE W, WANG X R, TANG H R. Genome-wide identification and analysis of terpene synthase (TPS) genes in celery reveals their regulatory roles in terpenoid biosynthesis. Frontiers in Plant Science, 2022, 13: 1010780.
[30]
LI X W, HU Y, SU M S, ZHANG M H, DU J H, ZHOU H J, ZHANG X N, YE Z W. Genome-wide analysis of terpene synthase gene family to explore candidate genes related to disease resistance in Prunus persica. Frontiers in Plant Science, 2022, 13: 1032838.
[31]
AHARONI A, GIRI A P, VERSTAPPEN F W A, BERTEA C M, SEVENIER R, SUN Z K, JONGSMA M A, SCHWAB W, BOUWMEESTER H J. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. The Plant Cell, 2004, 16(11): 3110-3131.
[32]
THOLL D, CHEN F, PETRI J, GERSHENZON J, PICHERSKY E. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant Journal, 2005, 42(5): 757-771.
[33]
NIEUWENHUIZEN N J, CHEN X Y, WANG M Y, MATICH A J, PEREZ R L, ALLAN A C, GREEN S A, ATKINSON R G. Natural variation in monoterpene synthesis in kiwifruit: Transcriptional regulation of terpene synthases by NAC and ETHYLENE- INSENSITIVE3-like transcription factors. Plant Physiology, 2015, 167(4): 1243-1258.
[34]
YOSHITOMI K, TANIGUCHI S, TANAKA K, UJI Y, AKIMITSU K, GOMI K. Rice terpene synthase 24 (OsTPS24) encodes a jasmonate- responsive monoterpene synthase that produces an antibacterial γ-terpinene against rice pathogen. Journal of Plant Physiology, 2016, 191: 120-126.
[35]
ALQUÉZAR B, RODRÍGUEZ A, DE LA PEÑA M, PEÑA L. Genomic analysis of terpene synthase family and functional characterization of seven sesquiterpene synthases from Citrus sinensis. Frontiers in Plant Science, 2017, 8: 1481.
[36]
CHEN X E, YANG W, ZHANG L Q, WU X M, CHENG T, LI G L. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple. Computational Biology and Chemistry, 2017, 70: 40-48.

doi: S1476-9271(16)30450-9 pmid: 28797912
[37]
SUN Y, HUANG X Z, NING Y S, JING W X, BRUCE T J A, QI F J, XU Q X, WU K M, ZHANG Y J, GUO Y Y. TPS46, a rice terpene synthase conferring natural resistance to bird cherry-Oat aphid, Rhopalosiphum padi (linnaeus). Frontiers in Plant Science, 2017, 8: 110.
[38]
CHEN X J, CHEN H, YUAN J S, KÖLLNER T G, CHEN Y Y, GUO Y F, ZHUANG X F, CHEN X L, ZHANG Y J, FU J Y, NEBENFÜHR A, GUO Z J, CHEN F. The rice terpene synthase gene OsTPS19 functions as an (S)-limonene synthase in planta, and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae. Plant Biotechnology Journal, 2018, 16(10): 1778-1787.
[39]
LI Y Z, HE L L, SONG Y H, ZHANG P, CHEN D D, GUAN L P, LIU S J. Comprehensive study of volatile compounds and transcriptome data providing genes for grape aroma. BMC Plant Biology, 2023, 23(1): 171.

doi: 10.1186/s12870-023-04191-1 pmid: 37003985
[40]
LI L, MA X W, ZHAN R L, WU H X, YAO Q S, XU W T, LUO C, ZHOU Y G, LIANG Q Z, WANG S B. Profiling of volatile fragrant components in a mini-core collection of mango germplasms from seven countries. PLoS ONE, 2017, 12(12): e0187487.
[41]
WANG Y J, YANG C X, LI S H, YANG L, WANG Y N, ZHAO J B, JIANG Q. Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC-MS. Food Chemistry, 2009, 116(1): 356-364.
[42]
WU Y S, ZHANG W W, YU W J, ZHAO L P, SONG S R, XU W P, ZHANG C X, MA C, WANG L, WANG S P. Study on the volatile composition of table grapes of three aroma types. LWT, 2019, 115: 108450.
[43]
杜丽娜, 张存莉, 朱玮, 张高宏. 植物次生代谢合成途径及生物学意义. 西北林学院学报, 2005, 20(3): 150-155.
DU L N, ZHANG C L, ZHU W, ZHANG G H. The synthetic way and biological significance of plant secondary metabolism. Journal of Northwest Forestry University, 2005, 20(3): 150-155. (in Chinese)
[44]
ZENG L T, WANG X Q, KANG M, DONG F, YANG Z Y. Regulation of the rhythmic emission of plant volatiles by the circadian clock. International Journal of Molecular Sciences, 2017, 18(11): 2408.
[45]
AUBOURG S, LECHARNY A, BOHLMANN J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Molecular Genetics and Genomics, 2002, 267(6): 730-745.
[46]
IRMISCH S, JIANG Y F, CHEN F, GERSHENZON J, KÖLLNER T G. Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa). BMC Plant Biology, 2014, 14: 270.

doi: 10.1186/s12870-014-0270-y pmid: 25303804
[47]
PRISIC S, XU J J, COATES R M, PETERS R J. Probing the role of the DXDD motif in Class II diterpene cyclases. Chembiochem, 2007, 8(8): 869-874.

pmid: 17457817
[48]
CHRISTIANSON D W. Structural biology and chemistry of the terpenoid cyclases. Chemical Reviews, 2006, 106(8): 3412-3442.

doi: 10.1021/cr050286w pmid: 16895335
[49]
BOHLMANN J, KEELING C I. Terpenoid biomaterials. The Plant Journal, 2008, 54(4): 656-669.

doi: 10.1111/j.1365-313X.2008.03449.x pmid: 18476870
[50]
THOLL D, LEE S. Terpene specialized metabolism in Arabidopsis thaliana. The Arabidopsis Book, 2011, 9: e0143.
[51]
LIU Y, LUO S H, HUA J, LI D S, LING Y, LUO Q, LI S H. Characterization of defensive cadinenes and a novel sesquiterpene synthase responsible for their biosynthesis from the invasive Eupatorium adenophorum. New Phytologist, 2021, 229(3): 1740-1754.
[52]
LI F Q, LI W, LIN Y J, PICKETT J A, BIRKETT M A, WU K M, WANG G R, ZHOU J J. Expression of Lima bean terpene synthases in rice enhances recruitment of a beneficial enemy of a major rice pest. Plant, Cell & Environment, 2018, 41(1): 111-120.
[53]
ZHAO M Y, ZHANG N, GAO T, JIN J Y, JING T T, WANG J M, WU Y, WAN X C, SCHWAB W, SONG C K. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. New Phytologist, 2020, 226(2): 362-372.

doi: 10.1111/nph.16364 pmid: 31828806
[54]
MA C R, LI R Y, SUN Y, ZHANG M, LI S, XU Y X, SONG J, LI J, QI J F, WANG L, WU J Q. ZmMYC2s play important roles in maize responses to simulated herbivory and jasmonate. Journal of Integrative Plant Biology, 2023, 65(4): 1041-1058.

doi: 10.1111/jipb.13404
[55]
JIA Q D, BROWN R, KÖLLNER T G, FU J Y, CHEN X L, WONG G K S, GERSHENZON J, PETERS R J, CHEN F. Origin and early evolution of the plant terpene synthase family. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(15): e2100361119.
[56]
ZI J C, MAFU S, PETERS R J. To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism. Annual Review of Plant Biology, 2014, 65: 259-286.

doi: 10.1146/annurev-arplant-050213-035705 pmid: 24471837
[57]
ZHOU K, GAO Y, HOY J A, MANN F M, HONZATKO R B, PETERS R J. Insights into diterpene cyclization from structure of bifunctional abietadiene synthase from Abies grandis. Journal of Biological Chemistry, 2012, 287(9): 6840-6850.
[58]
周显臻, 姚诗幻, 李嘉雯, 陈凯玥, 于丹. 落叶松-杨栅锈菌基因复制事件及共线性分析. 菌物学报, 2021, 40(3): 580-591.

doi: 10.13346/j.mycosystema.200345
ZHOU X Z, YAO S H, LI J W, CHEN K Y, YU D. Analyses of gene duplication and synteny in Melampsora larici-Populina (Pucciniales, Basidiomycota). Mycosystema, 2021, 40(3): 580-591. (in Chinese)
[59]
侯雅琼, 郎红珊, 闻蒙蒙, 谷易云, 朱润洁, 汤晓丽. 猕猴桃AcHSP20基因家族的鉴定及表达分析. 生物技术通报, 2024, 40(5): 167-178.

doi: 10.13560/j.cnki.biotech.bull.1985.2023-1092
HOU Y Q, LANG H S, WEN M M, GU Y Y, ZHU R J, TANG X L. Identification and expression analysis of AcHSP20 gene family in kiwifruit. Biotechnology Bulletin, 2024, 40(5): 167-178. (in Chinese)
[60]
XU G X, GUO C C, SHAN H Y, KONG H Z. Divergence of duplicate genes in exon-intron structure. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(4): 1187-1192.
[61]
PAZOUKI L, NIINEMETS Ü. Multi-substrate terpene synthases: Their occurrence and physiological significance. Frontiers in Plant Science, 2016, 7: 1019.

doi: 10.3389/fpls.2016.01019 pmid: 27462341
[62]
王武. 葡萄果实单萜类香气物质鉴定及其合成机制研究[D]. 南京: 南京农业大学, 2021.
WANG W. Identification and synthesis mechanism of monoterpenoids in grape fruit[D]. Nanjing: Nanjing Agricultural University, 2021. (in Chinese)
[63]
WILSON B, STRAUSS C R, WILLIAMS P J. The distribution of free and glycosidically-bound monoterpenes among skin, juice, and pulp fractions of some white grape varieties. American Journal of Enology and Viticulture, 1986, 37(2): 107-111.
[64]
HJELMELAND A K, EBELER S E. Glycosidically bound volatile aroma compounds in grapes and wine: A review. American Journal of Enology and Viticulture, 2015, 66(1): 1-11.
[65]
SUN L, ZHU B Q, ZHANG X Y, WANG H L, YAN A L, ZHANG G J, WANG X Y, XU H Y. The accumulation profiles of terpene metabolites in three Muscat table grape cultivars through HS-SPME- GCMS. Scientific Data, 2020, 7(1): 5.
[66]
WEN Y Q, ZHONG G Y, GAO Y, LAN Y B, DUAN C Q, PAN Q H. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biology, 2015, 15: 240.
[67]
YANG C X, WANG Y J, WU B H, FANG J B, LI S H. Volatile compounds evolution of three table grapes with different flavour during and after maturation. Food Chemistry, 2011, 128(4): 823-830.
[68]
KALUA C M, BOSS P K. Evolution of volatile compounds during the development of cabernet sauvignon grapes (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 2009, 57(9): 3818-3830.
[69]
BUREAU S M, RAZUNGLES A J, BAUMES R L. The aroma of Muscat of frontignan grapes: effect of the light environment of vine or bunch on volatiles and glycoconjugates. Journal of the Science of Food and Agriculture, 2000, 80(14): 2012-2020.
[70]
WANG Y, HE Y N, CHEN W K, HE F, CHEN W, CAI X D, DUAN C Q, WANG J. Effects of cluster thinning on vine photosynthesis, berry ripeness and flavonoid composition of Cabernet Sauvignon. Food Chemistry, 2018, 248: 101-110.

doi: S0308-8146(17)31960-X pmid: 29329832
[71]
XU X Q, LIU B, ZHU B Q, LAN Y B, GAO Y, WANG D, REEVES M J, DUAN C Q. Differences in volatile profiles of Cabernet Sauvignon grapes grown in two distinct regions of China and their responses to weather conditions. Plant Physiology and Biochemistry, 2015, 89: 123-133.
[72]
SHANG J Z, FENG D D, LIU H, NIU L T, LI R H, LI Y J, CHEN M X, LI A, LIU Z H, HE Y H, GAO X, JIAN H Y, WANG C Q, TANG K X, BAO M Z, WANG J H, YANG S H, YAN H J, NING G G. Evolution of the biosynthetic pathways of terpene scent compounds in roses. Current Biology, 2024, 34(15): 3550-3563.e8.
[73]
DONG Y M, WEI Z L, ZHANG W Y, LI J R, HAN M X, BAI H T, LI H, SHI L. LaMYC7, a positive regulator of linalool and caryophyllene biosynthesis, confers plant resistance to Pseudomonas syringae. Horticulture Research, 2024, 11(4): uhae044.
[74]
YANG C L, LI Y Z, HE L L, SONG Y H, ZHANG P, LIU S J. Metabolomic and transcriptomic analyses of monoterpene biosynthesis in Muscat and Neutral grape hybrids. Scientia Horticulturae, 2024, 336: 113434.
[75]
LENG X P, CONG J M, CHENG L X, WAN H L, LIU Y X, YUAN Y B, FANG J G. Identification of key gene networks controlling monoterpene biosynthesis during grape ripening by integrating transcriptome and metabolite profiling. Horticultural Plant Journal, 2023, 9(5): 931-946.
[76]
YUE X F, JU Y L, ZHANG H J, WANG Z H, XU H D, ZHANG Z W. Integrated transcriptomic and metabolomic analysis reveals the changes in monoterpene compounds during the development of Muscat Hamburg (Vitis vinifera L.) grape berries. Food Research International, 2022, 162(Pt B):112065.
[1] TENG MengXin, XU Ya, HE Jing, WANG Qi, QIAO Fei, LI JingYang, LI XinGuo. Identification and Functional Analysis of Ca2+-ATPase Gene Family in Banana [J]. Scientia Agricultura Sinica, 2025, 58(7): 1418-1433.
[2] GUO AoLin, LIN JunXuan, LAI GongTi, HE LiYuan, CHE JianMei, PAN Ruo, YANG FangXue, HUANG YuJi, CHEN GuiXin, LAI ChengChun. Effect of VdF3′5′H2 Overexpression on the Accumulation of Anthocyanin Composition in Spine Grape Cells [J]. Scientia Agricultura Sinica, 2025, 58(4): 802-818.
[3] ZHANG LinLin, GONG Rui, CUI YanLing, ZHONG XiongHui, LI Ye, LI RanHong, QIAN ZongWei. Effect Analysis of SmWRKY30 in Eggplant Resistance to Ralstonia solanacearum by Virus Induced Gene Silencing (VIGS) [J]. Scientia Agricultura Sinica, 2025, 58(3): 548-563.
[4] LUO ChaoDan, FENG ChunMei, LI JianQiang, LI XinRong, WEI Yong, YANG LiYi, LIU XiaoJin, TAN He, REN ErFang, LUO XiaoJie. Analysis of Differential Aroma Volatiles of Tainong No.1 Mango of Different Ripeness by Non-Targeted Metabolomics Based on Gas Chromatography-Mass Spectrometry [J]. Scientia Agricultura Sinica, 2025, 58(3): 564-581.
[5] ZHANG SiNing, ZHANG XingRui, WU DongXuan, KANG JingBo, CHEN XiaoLin, GENG LiJun, YIN GuangMin, CHEN JiaJing, GAO JunYan, CAI ZhongHu, LIU Yuan, XU Juan. Aroma Quality Analysis of Guangdongxiangshui Lemon Based on Molecular Sensory Technology [J]. Scientia Agricultura Sinica, 2025, 58(1): 141-155.
[6] GE Yi, ZHENG QiuLing, CHEN MengXia, XIA JiaXin, FANG Xiang, TANG MeiLing, FANG JingGui, SHANGGUAN LingFei. Cloning and Functional Analysis of the Autophagy Gene ATG8f in the Grapevine [J]. Scientia Agricultura Sinica, 2025, 58(1): 156-169.
[7] WANG Wei, WU ChuanLei, HU XiaoYu, LI JiaJia, BAI PengYu, WANG GuoJi, MIAO Long, WANG XiaoBo. Genome-Wide Identification of Soybean LOX Gene Family and the Effect of GmLOX15A1 Gene Allele on 100-Seed Weight [J]. Scientia Agricultura Sinica, 2025, 58(1): 10-29.
[8] FENG Fan, JIANG XingRui, WANG LingYun, ZHANG YongGang, LI AiHua, TAO YongSheng. The Stabilization of Aroma and Color During Hutai-8 Rose Winemaking by Gallic Acid Treatment [J]. Scientia Agricultura Sinica, 2024, 57(8): 1592-1605.
[9] YUAN Miao, ZHOU Juan, DANG ShiZhuo, TANG XueShen, ZHANG YaHong. Functional Analysis of VvARF18 Gene in Red Globe Grape [J]. Scientia Agricultura Sinica, 2024, 57(7): 1363-1376.
[10] LUO Qin, MAO FangHua, CHEN XieYong, CHEN Jing, HUANG Biao, YE NaiXing, ZHENG DeYong, WEI Hang, YAO QingHua. Analysis of Aroma Characteristics and Origin Discrimination of White Peony Tea in Different Origins [J]. Scientia Agricultura Sinica, 2024, 57(23): 4774-4793.
[11] ZHAO HaiJuan, ZHANG YuPing, ZHANG YuJun, LIU Ning, XU Ming, LIU JiaCheng, WANG BiJun, LIU WeiSheng, LIU Shuo. Evaluation of Fruit Aroma in Chinese Plum Germplasm Based on Electronic Nose Technology [J]. Scientia Agricultura Sinica, 2024, 57(21): 4328-4341.
[12] TAN FangDai, HE YingXia, LIU JiaYue, LI AiHua, TAO YongSheng. Multidimensional Characterization of Astringency Quality in Dry Red Wine and Its Effects [J]. Scientia Agricultura Sinica, 2024, 57(21): 4342-4355.
[13] DAI YingZi, GUO HongYang, YANG ZhiFeng, WANG XianPu, XU LiLi. Identification of Salt Resistance Functional of Grape Transcription Factor VvERF2 [J]. Scientia Agricultura Sinica, 2024, 57(2): 336-348.
[14] XIE Qian, JIANG Lai, DING MingYue, LIU LingLing, CHEN QingXi. Metabolomic Analysis of Canarium album Fresh Food Quality Differences Based on Sensory Evaluation [J]. Scientia Agricultura Sinica, 2024, 57(2): 363-378.
[15] YIN JunLiang, LI JingYi, HAN Shuo, YANG PeiHua, MA JiaWei, LIU YiQing, HU HaiJun, ZHU YongXing. Identification of Ginger (Zingiber officinale Roscoe) NHX Gene Family Members and Characterization of Their Expression Patterns in Silicon Alleviating Salt Stress [J]. Scientia Agricultura Sinica, 2024, 57(19): 3848-3869.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!