Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (4): 617-634.doi: 10.3864/j.issn.0578-1752.2025.04.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Heat Tolerance Function of Wheat TaGRAS34-5A Gene

DIAO DengChao1(), LI YunLi1, MENG XiangYu1, JI SongHan1, SUN YuChen1, MA XueHong1, LI Jie1, FENG YongJia1, LI ChunLian1, WU JianHui1,3, ZENG QingDong2,3, HAN DeJun1,3, $\boxed{\hbox{WANG ChangFa}}$1,3, ZHENG WeiJun1,3()   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi
    2 College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi
    3 Northwest A&F University/National Key Laboratory for Crop Stress Resistance and High- Efficiency Production, Yangling 712100, Shaanxi
  • Received:2024-07-26 Accepted:2024-10-11 Online:2025-02-16 Published:2025-02-24
  • Contact: ZHENG WeiJun

Abstract:

【Objective】The GRAS family constitutes a unique class of plant-specific transcription factors that play a pivotal role in plant development and stress response. To elucidate the function of GRAS family genes in wheat heat tolerance,which can provide genetic resources and theoretical foundation for wheat heat-resistant breeding.【Method】A potential heat stress-responsive transcription factor gene, TaGRAS34-5A, was identified through transcriptome analysis of TAM107 and Chinese spring wheat seedlings under high-temperature conditions. Subsequently, a bioinformatics analysis was performed on TaGRAS34-5A, and a phylogenetic tree was constructed to elucidate its molecular characteristics. The expression pattern of TaGRAS34-5A under various stresses, including high temperature, abscisic acid (ABA), ethylene (ETH), and salicylic acid (SA) treatments, were examined using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) method. The subcellular localization of the TaGRAS34-5A protein was determined using wheat protoplast transient expression technique. Furthermore, the heat tolerance function of TaGRAS34-5A was validated using the heterologous expression system of Saccharomyces cerevisiae and the BSMV:VIGS (Barley stripe mosaic virus: Virus-Induced Gene Silencing) silencing technique. potential interacting proteins of TaGRAS34-5A were screened using yeast two-hybrid technology, and the heat tolerance function was verified, providing preliminary insights into its heat tolerance mechanism.【Result】TaGRAS34-5A, equipped with a characteristic GRAS domain and belongs to the GRAS transcription factor family, is localized to both the cell nucleus and cytoplasm. Bioinformatics analysis indicates that the TaGRAS34-5A promoter contains a large number of hormone response elements and light response elements, and it is most closely related to TaSCL14, OsGRAS23, and AtSCL14 in terms of phylogenetic relationships, suggesting its potential function in responding to oxidative stress. Its expression is upregulated under high-temperature, ethylene (ETH), abscisic acid (ABA), and salicylic acid (SA) treatments, peaking at 4, 6, 0.5, and 12 hours post-treatment, respectively, with the most significant induction observed under heat stress and SA. Functional assays in yeast demonstrated that heterologous expression of TaGRAS34-5A enhances the heat tolerance of the yeast. The results of BSMV:VIGS transient silencing experiment showed that after the 42 ℃ high-temperature treatment, TaGRAS34-5A silenced plants exhibited decreased chlorophyll content, reduced POD enzyme activity, increased cellular peroxidation, and decreased heat tolerance compared to the control. Preliminary studies on the heat tolerance mechanism suggest that TaGRAS34-5A exhibits strong transcriptional self-activation activity.it may modulate wheat heat tolerance by interacting with proteins such as the bZIP family transcription factor HBP-1b and the E3 ubiquitin ligase hel2, thereby regulating cellular redox homeostasis and detoxification processes, positively influencing the heat tolerance of wheat.【Conclusion】TaGRAS34-5A is induced by heat, ABA, ETH, and SA, and its encoded protein is located in the nucleus and cytoplasm. It exhibits transcriptional activation activity. Heterologous overexpression of TaGRAS34-5A enhances the heat tolerance of Saccharomyces cerevisiae. Silencing TaGRAS34-5A in wheat plants increases cellular peroxidation, decreases chlorophyll content, and reduces heat tolerance. TaGRAS34-5A may regulate the heat tolerance of wheat by modulating cellular redox state and detoxification processes.

Key words: wheat, GRAS transcription factor, heat stress, gene silencing, protein interaction

Table 1

Primers used in this experiment"

引物名称Primer name 引物序列Primer sequence (5′-3′)
TaGRAS34-5A(1-88)F TCAGAGGAGGACCTGCATATGATGGGCTCCTCCTCCTAC
TaGRAS34-5A(1-88)R TCGACGGATCCCCGGGAATTCACGAGGTCCTCCGGCGT
TaGRAS34-5A(88)F TCAGAGGAGGACCTGCATATGCTGCCCTTCATCTCCCGC
TaGRAS34-5A(88)R TCGACGGATCCCCGGGAATTTTATGAGCTAGCATCGTT
TaGRAS34-5A(1-199)F TCAGAGGAGGACCTGCATATGATGGGCTCCTCCTCCTAC
TaGRAS34-5A(1-199)R TCGACGGATCCCCGGGAATTGAGGAAGGCGGAGCTCAT
TaGRAS34-5A(199)F TCAGAGGAGGACCTGCATATGAAGGGGATGCAGGAGGCC
TaGRAS34-5A(199)R TCGACGGATCCCCGGGAATTTTATGAGCTAGCATCGTT
TaGRAS34-5A(1-350)F TCAGAGGAGGACCTGCATATGATGGGCTCCTCCTCCTAC
TaGRAS34-5A(1-350)R TCGACGGATCCCCGGGAATTGGCCCCCTTCCCACCGC
TaGRAS34-5A(350)F TCAGAGGAGGACCTGCATATGAATGGCAAGGGGAGGGGC
TaGRAS34-5A(350)R TCGACGGATCCCCGGGAATTTTATGAGCTAGCATCGTT
TaGRAS34-5A(FL)F TCAGAGGAGGACCTGCATATGATGGCAAGGGGAGGGGCC
TaGRAS34-5A(FL)R TCGACGGATCCCCGGGAATTTTATGAGCTAGCATCGTT
TaGRAS34-5A pTF486F CCATCAGCCCAGAGGATCCATGGGCTCCTCCTCC
TaGRAS34-5A pTF486R CCTTGCTCACCATGGATCCTGAGCTAGCATCGTT
TaGRAS34-5A BSMVF1 TTTTTTTTAGCTAGCTGATTAATTAACATCCCCGGCTCGCC
TaGRAS34-5A BSMVR1 TCTTCCGTTGCTAGCTGAGCGGCCGCTTGTCGTCGATGTCC
TaGRAS34-5A BSMVF2 TTTTTTTTAGCTAGCTGATTAATTAAACTCGTTGTTGGATT
TaGRAS34-5A BSMVR2 TCTTCCGTTGCTAGCTGAGCGGCCGCACGTCGTCTCCCAGC
TaGRAS34-5AqPCRF1 AATATGGGTTCCAGTGGCCG
TaGRAS34-5AqPCRR1 AGTGATCCTTACATCTGGCGG
TaGRAS34-5DqPCRF1 GAGGGCCGCCAGATGTAAG
TaGRAS34-5DqPCRR1 CAAATCCTCTTTGCGGAGCG
TaHBP-1b(c38)-3BqPCRF TCCATGAGTGGAAATGGGGC
TaHBP-1b(c38)-3BqPCRR ACTACGCAGCTCAGTATCGC
TaHBP-1b(c38)-3DqPCRF AGCTGCAGTTAATGCCCGTG
TaHBP-1b(c38)-3DqPCRR AGCTCAGAAGGTCGGAAACC
TraesCS5B02G347900-qPCRF TGGTTCCGATGAGGTTGAGC
TraesCS5B02G347900-qPCRR GTGTAGTGCTGCCTGGTCAT
TraesCS7D02G442700-qPCRF CACCCTCCACCTGGTTCTC
TraesCS7D02G442700qPCRR GGTCCGGTGGGATACCCT
TraesCS7D02G443100qPCRF CCCTCCACCTGGTTCTCAG
TraesCS7D02G443100qPCRR CGGTGGGATACCCTCCTT

Fig. 1

Amino acid sequence alignment diagram of wheat TaGRAS34-5A protein with five other plants"

Fig. 2

Phylogenetic tree of GRAS proteins from different species"

Fig. 3

Protein sequence alignment of TaGRAS34-5A and TaGRAS34-5D"

Fig. 4

Bioinformatics analysis of TaGRAS34-5A protein A: Protein conserved domain prediction; B: TaGRAS34-5A motif analysis; C: Protein secondary structure prediction; D: Protein tertiary structure prediction"

Fig. 5

Cis acting elements in TaGRAS34-5A promoter"

Fig. 6

Expression patterns of wheat TaGRAS34-5A under different treatments *: P<0.05, **: P<0.01, ***: P<0.001; ****: P<0.0001. The same as below"

Fig. 7

Subcellular localization of TaGRAS34-5A protein in wheat"

Fig. 8

Yeast heat tolerance test of wheat TaGRAS34-5A"

Fig. 9

Validation of heat resistance function of wheat TaGRAS34-5A based on VIGS system A: Silence efficiency detection; B: Phenotype after treatment at 42 ℃ for 16 h/38 ℃ for 8 h for 5 days; C: Total chlorophyll content; D: Peroxidase activity; E: Malondialdehyde content; F: Leaf pathogenesis map of BSMV-VIGS; G: Hydrogen peroxide, superoxide anion staining; NS: No virus inoculation and normal temperature growth. HS: No virus inoculation and high temperature treatment; BSMV: 00: Vaccination with empty virus and high-temperature treatment; BSMV: TaGRAS34-5AT1/T2: Inoculate recombinant virus and treat with high temperature. Different lowercase letters indicate significant differences at the 0.05 probability level"

Fig. 10

Transcription activation activity analysis of TaGRAS34-5A (A) and yeast dual heterozygous screening library (B)"

Table 2

List of potential interacting proteins for TaGRAS34-5A"

名称Name 位置Position (bp) 描述Description
TraesCS1D02G376000 Chr.1D:452502146-452506435(-) 丝氨酸/苏氨酸蛋白激酶STN7,叶绿体
Serine/threonine-protein kinase STN7, chloroplastic
TraesCS2B02G570100 Chr.2B:760890079-760892799(-) 泛素结合酶E2 28 Ubiquitin-conjugating enzyme E2 28
TraesCS3B02G220400 Chr.3B:269247185-269257672(+) 转录因子HBP-1b(c38) Transcription factor HBP-1b(c38)
TraesCS3B02G391000 Chr.3B:616257855-616262245(+) 加速细胞死亡蛋白6 Protein ACCELERATED CELL DEATH 6
TraesCS3D02G194800 Chr.3D:187831578-187841857(+) 转录因子HBP-1b(c38)Transcription factor HBP-1b(c38)
TraesCS3D02G352000 Chr.3D:462860336-462864221(-) 含锚蛋白重复序列蛋白At5g02620 Ankyrin repeat-containing protein At5g02620
TraesCS4D02G066600 Chr.4D:41216419-41220849(-) 含CBS结构域的蛋白质CBSX3 CBS domain-containing protein CBSX3
TraesCS5A02G193700 Chr.5A:397143531-397146861(+) 线粒体外膜孔蛋白Mitochondrial outer membrane porin
TraesCS5B02G189000 Chr.5B:341051034-341054531(+) 线粒体外膜孔蛋白Mitochondrial outer membrane porin
TraesCS5B02G347900 Chr.5B:528780525-528784513(+) E3泛素蛋白连接酶Hel2 E3 ubiquitin-protein ligase hel2
TraesCS6A02G041900 Chr.6A:22168247-22170677(+) 多酚氧化酶F,叶绿体Polyphenol oxidase F, chloroplastic
TraesCS6B02G286700 Chr.6B:516482885-516488319(-) 蛋白质TRANSPARENT TESTA GLABRA 1 Protein TRANSPARENT TESTA GLABRA 1
TraesCS7A02G514800 Chr.7A:700689132-700707173(+) 转录起始因子TFIID亚基1 Transcription initiation factor TFIID subunit 1
TraesCS7D02G442700 Chr.7D:562148061-562150169(-) 泛素Polyubiquitin
TraesCS7D02G443100 Chr.7D:562401777-562425958(+) 泛素Polyubiquitin

Fig. 11

Expression heatmap of potential interacting proteins for TaGRAS34-5A A: Transcriptome of China Spring under 7 days heat stress during seedling stage; B: Transcriptome of TAM107 under 7 days heat stress during seedling stage"

Fig. 12

Point-to-point verification of TaGRAS34-5A interacting proteins"

Fig. 13

Expression patterns of five interacting proteins of TaGRAS34-5A under heat stress"

Fig. 14

Phylogenetic tree and sequence alignment diagram of TaHBP-1b, Polyubiquitin, and its homologous proteins"

[1]
何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018, 8(1): 107-114.

doi: 10.11923/j.issn.2095-4050.cjas2018-1-107
HE Z H, ZHUANG Q S, CHENG S H, YU Z W, ZHAO Z D, LIU X. Wheat production and technology improvement in China. Journal of Agriculture, 2018, 8(1): 107-114. (in Chinese)

doi: 10.11923/j.issn.2095-4050.cjas2018-1-107
[2]
郭世博, 张方亮, 张镇涛, 周丽涛, 赵锦, 杨晓光. 全球气候变暖对中国种植制度的可能影响XIV: 东北大豆高产稳产区及农业气象灾害分析. 中国农业科学, 2022, 55(9): 1763-1780. doi: 10.3864/j.issn.0578-1752.2022.09.006.
GUO S B, ZHANG F L, ZHANG Z T, ZHOU L T, ZHAO J, YANG X G. The possible effects of global warming on cropping systems in China XIV: Distribution of high-stable-yield zones and agro- meteorological disasters of soybean in Northeast China. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780. doi: 10.3864/j.issn.0578-1752.2022.09.006. (in Chinese)
[3]
LOBELL D B, SCHLENKER W, COSTA-ROBERTS J. Climate trends and global crop production since 1980. Science, 2011, 333(6042): 616-620.

doi: 10.1126/science.1204531 pmid: 21551030
[4]
ASSENG S, EWERT F, MARTRE P, RÖTTER R P, LOBELL D B, CAMMARANO D, KIMBALL B A, OTTMAN M J, WALL G W, WHITE J W, REYNOLDS M P, ALDERMAN P D, PRASAD P V V, AGGARWAL P K, ANOTHAI J, BASSO B, BIERNATH C, CHALLINOR A J, DE SANCTIS G, DOLTRA J, FERERES E, GARCIA-VILA M, GAYLER S, HOOGENBOOM G, HUNT L A, IZAURRALDE R C, JABLOUN M, JONES C D, KERSEBAUM K C, KOEHLER A K, MÜLLER C, NARESH KUMAR S, NENDEL C, O’LEARY G, OLESEN J E, PALOSUO T, PRIESACK E, EYSHI REZAEI E, RUANE A C, SEMENOV M A, SHCHERBAK I, STÖCKLE C, STRATONOVITCH P, STRECK T, SUPIT I, TAO F, THORBURN P J, WAHA K, WANG E, WALLACH D, WOLF J, ZHAO Z, ZHU Y. Rising temperatures reduce global wheat production. Nature Climate Change, 2015, 5(2): 143-147.
[5]
卢云泽. 小麦灌浆期旗叶响应高温胁迫的蛋白组学与热响应关键基因HSP90的全基因组分析[D]. 杨凌: 西北农林科技大学, 2018.
LU Y Z. Proteomics and genome-wide analysis of HSP90 a key gene for heat response in flag leaves of wheat during grain filling stage[D]. Yangling: Northwest A&F University, 2018. (in Chinese)
[6]
刘秀坤, 韩冉, 李晓明, 解树斌, 李法计, 陈亚鹏, 翟胜男, 李豪圣, 刘建军, 赵振东, 张玉梅, 曹新有. 灌浆期小麦旗叶在高温胁迫下的转录组分析. 山东农业科学, 2022, 54(10): 1-10, 16.
LIU X K, HAN R, LI X M, XIE S B, LI F J, CHEN Y P, ZHAI S N, LI H S, LIU J J, ZHAO Z D, ZHANG Y M, CAO X Y. Transcriptome analysis of wheat flag leaves under high temperature stress at grain-filling stage. Shandong Agricultural Sciences, 2022, 54(10): 1-10, 16. (in Chinese)
[7]
LIU Y F, WANG W. Characterization of the GRAS gene family reveals their contribution to the high adaptability of wheat. PeerJ, 2021, 9: e10811.
[8]
KUMAR B, BHALOTHIA P. Evolutionary analysis of GRAS gene family for functional and structural insights into hexaploid bread wheat (Triticum aestivum). Journal of Biosciences, 2021, 46: 45.
[9]
HIRSCH S, OLDROYD G E D. GRAS-domain transcription factors that regulate plant development. Plant Signalling & Behavior, 2009, 4(8): 698-700.
[10]
MISHRA S, CHAUDHARY R, PANDEY B, SINGH G, SHARMA P. Genome-wide identification and expression analysis of the GRAS gene family under abiotic stresses in wheat (Triticum aestivum L.). Scientific Reports, 2023, 13(1): 18705.
[11]
BOLLE C, KONCZ C, CHUA N H. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes & Development, 2000, 14(10): 1269-1278.
[12]
TORRES-GALEA P, HIRTREITER B, BOLLE C. Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome A signal transduction. Plant Physiology, 2013, 161(1): 291-304.
[13]
GAO M J, LI X, HUANG J, GROPP G M, GJETVAJ B, LINDSAY D L, WEI S, COUTU C, CHEN Z X, WAN X C, HANNOUFA A, LYDIATE D J, GRUBER M Y, CHEN Z J, HEGEDUS D D. SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme. Nature Communications, 2015, 6: 7243.
[14]
WU J, SUN L Q, SONG Y, BAI Y, WAN G Y, WANG J X, XIA J Q, ZHANG Z Y, ZHANG Z S, ZHAO Z, XIANG C B. The OsNLP3/4- OsRFL module regulates nitrogen-promoted panicle architecture in rice. New Phytologist, 2023, 240(6): 2404-2418.
[15]
LIU Y D, HUANG W, XIAN Z Q, HU N, LIN D B, REN H, CHEN J X, SU D D, LI Z G. Overexpression of SlGRAS40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin signaling. Frontiers in Plant Science, 2017, 8: 1659.
[16]
ZUO Z F, KANG H G, PARK M Y, JEONG H, SUN H J, SONG P S, LEE H Y. Zoysia japonica MYC type transcription factor ZjICE 1 regulates cold tolerance in transgenic Arabidopsis. Plant Science, 2019, 289: 110254.
[17]
WANG T T, YU T F, FU J D, SU H G, CHEN J, ZHOU Y B, CHEN M, GUO J, MA Y Z, WEI W L, XU Z S. Genome-wide analysis of the GRAS gene family and functional identification of GmGRAS37 in drought and salt tolerance. Frontiers in Plant Science, 2020, 11: 604690.
[18]
FODE B, SIEMSEN T, THUROW C, WEIGEL R, GATZ C. The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress- inducible promoters. The Plant Cell, 2008, 20(11): 3122-3135.
[19]
CHEN K M, LI H W, CHEN Y F, ZHENG Q, LI B, LI Z S. TaSCL14, a novel wheat (Triticum aestivum L.) GRAS gene, regulates plant growth, photosynthesis, tolerance to photooxidative stress, and senescence. Journal of Genetics and Genomics, 2015, 42(1): 21-32.
[20]
LING L, LI M J, CHEN N Y, REN G L, QU L N, YUE H, WU X Y, ZHAO J. Genome-wide analysis and expression of the GRAS transcription factor family in Avena sativa. Genes, 2023, 14(1): 164.
[21]
KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.

doi: 10.1093/molbev/msy096 pmid: 29722887
[22]
席海秀, 艾可筠, 佟少明. 普通小麦幼苗叶肉细胞原生质体分离方法的优化. 生物技术通报, 2016, 32(4): 68-73.

doi: 10.13560/j.cnki.biotech.bull.1985.2016.04.008
XI H X, AI K Y, TONG S M. The optimization of the isolation method for mesophyll protoplasts from common wheat seedlings. Biotechnology Bulletin, 2016, 32(4): 68-73. (in Chinese)
[23]
曾润娴. 小麦TaBI-1.1基因的耐热功能验证和机理初步解析[D]. 杨凌: 西北农林科技大学, 2023.
ZENG R X. Verification of heat tolerance function and preliminary mechanism analysis of TaBI-1.1 gene in wheat[D]. Yangling: Northwest A&F University, 2023. (in Chinese)
[24]
XU K, CHEN S J, LI T F, MA X S, LIANG X H, DING X F, LIU H Y, LUO L J. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biology, 2015, 15: 141.

doi: 10.1186/s12870-015-0532-3 pmid: 26067440
[25]
SUN J H, XU J D, QU W R, HAN X L, QIU C, GAI Z S, ZHAI J T, QIN R, LIU H, WU Z H, LI Z J. Genome-wide analysis of R2R3- MYB transcription factors reveals their differential responses to drought stress and ABA treatment in desert poplar (Populus euphratica). Gene, 2023, 855: 147124.
[26]
李永红, 魏玉香, 谷茂. 水杨酸预处理对鸡冠花幼苗热胁迫的生理效应. 西北植物学报, 2008, 28(11): 2257-2262.
LI Y H, WEI Y X, GU M. Physiological effect of salicylic acid pretreatment on heat stress of Celosia cristata. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(11): 2257-2262. (in Chinese)
[27]
ZHANG H, ZHOU J F, KAN Y, SHAN J X, YE W W, DONG N Q, GUO T, XIANG Y H, YANG Y B, LI Y C, ZHAO H Y, YU H X, LU Z Q, GUO S Q, LEI J J, LIAO B, MU X R, CAO Y J, YU J J, LIN Y, LIN H X. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 2022, 376(6599): 1293-1300.

doi: 10.1126/science.abo5721 pmid: 35709289
[28]
LIM S D, CHO H Y, PARK Y C, HAM D J, LEE J K, JANG C S. The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. Journal of Experimental Botany, 2013, 64(10): 2899-2914.

doi: 10.1093/jxb/ert143 pmid: 23698632
[29]
LAKRA N, NUTAN K K, DAS P, ANWAR K, SINGLA-PAREEK S L, PAREEK A. A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery. Journal of Plant Physiology, 2015, 176: 36-46.

doi: 10.1016/j.jplph.2014.11.005 pmid: 25543954
[30]
HERRERA-VÁSQUEZ A, FONSECA A, UGALDE J M, LAMIG L, SEGUEL A, MOYANO T C, GUTIÉRREZ R A, SALINAS P, VIDAL E A, HOLUIGUE L. TGA class II transcription factors are essential to restrict oxidative stress in response to UV-B stress in Arabidopsis. Journal of Experimental Botany, 2021, 72(5): 1891-1905.
[1] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[2] MU ShuJia, DONG LiXia, LI Guang, YAN ZhenGang, LU YuLan. Optimization of N2O Emission Parameters in Dryland Spring Wheat Farmland Soil Based on Whale Optimization Algorithm [J]. Scientia Agricultura Sinica, 2025, 58(3): 537-547.
[3] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[4] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[5] ZHANG SiJia, YANG Jie, ZHAO Shuai, LI LiWei, WANG GuiYan. The Impact of Diversified Crops and Wheat-Maize Rotations on Soil Quality in the North China Plain [J]. Scientia Agricultura Sinica, 2025, 58(2): 238-251.
[6] SUN RuiQing, DANG HaiYan, SHE WenTing, WANG XingShu, CHU HongXin, WANG Tao, DING YuLan, LUO YiNuo, XU JunFeng, LI XiaoHan, WANG ZhaoHui. Yield Components and Soil Factors Affecting Zinc Concentration in Wheat Grain and Flour in Major Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2025, 58(2): 291-306.
[7] WANG RongRong, XU NingLu, HUANG XiuLi, ZHAO KaiNan, HUANG Ming, WANG HeZheng, FU GuoZhan, WU JinZhi, LI YouJun. Effects of One-Off Irrigation and Nitrogen Fertilizer Management on Grain Yield and Quality in Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(1): 43-57.
[8] GAO XingXiang, KONG Yuan, ZHANG YaoZhong, LI Mei, LI Jian, JIN Yan, ZHANG GuoFu, LIU ShuaiShuai, LIU MingPing, ZENG Yan, BAI LianYang. Analysis on Distribution and Change of Weed Community in Winter Wheat Field in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 91-100.
[9] LÜ JinLing, YOU Ke, WANG XiaoFei, XIAO Qiang, LI WenFeng, MA Jin, YANG Qing, ZHANG JinPing, KONG HaiJiang, CHANG YunHua. Variation Characteristics and Key Influencing Factors of Near-Surface Ambient Ammonia Concentration in Typical Cropland Areas in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 127-140.
[10] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[11] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[12] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[13] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[14] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[15] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!