Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (22): 4656-4672.doi: 10.3864/j.issn.0578-1752.2025.22.008

• PLANT PROTECTION • Previous Articles     Next Articles

Transcriptome Analysis of Vicia faba Response to Alternaria alternata Infection and Validation of the Disease Resistance Function of VfPR4

WANG Fan(), LIU ChenWei, LU HongChen, XU RenChao, BIAN XiaoChun()   

  1. Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226012, Jiangsu
  • Received:2025-07-29 Accepted:2025-10-18 Online:2025-11-16 Published:2025-11-21
  • Contact: BIAN XiaoChun

Abstract:

【Objective】Leaf spot is a new type of fungal disease that restricts the production of broad beans, and Alternaria alternata is one of its main pathogens. The objective of this study is to explore the molecular pathways of broad beans in response to the infection of A. alternata through transcriptome analysis and disease resistant gene function verification. 【Method】Broad bean cultivar CD-006 was used as the experimental material, transcriptome sequencing was performed on the leaves inoculated with A. alternata at 0, 6, 12 and 24 h to screen differentially expressed genes (DEGs). GO (gene ontology) functional annotation and KEGG (Kyoto encyclopedia of genes and genomes) metabolic pathway enrichment analysis were conducted to excavate disease resistance related genes. qRT-PCR (quantitative real-time PCR) was conducted to validate transcriptome sequencing results, and VfPR4 was screened for genetic transformation in tobacco. To complete disease resistance function analysis of VfPR4, invasive inoculation method was used. 【Result】At 6, 12 and 24 h after infection, 3 537, 3 152 and 2 947 DEGs were up-regulated in broad beans, while 1 181, 1 453 and 1 319 DEGs were down-regulated. GO enrichment analysis revealed that DEGs were mainly enriched in oxidoreductase activity and some biosynthetic (metabolic) processes, and KEGG enrichment analysis found that DEGs were mainly enriched in pathways such as biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and flavonoid biosynthesis. At 6 h after infection, KEGG was also enriched in MAPK (mitogen-activated protein kinase) signaling pathway and plant-pathogen interaction pathway, which together enriched 32 DEGs. A total of 52 PR genes were discovered in transcriptome analysis, among which 35 genes were differentially expressed. Six DEGs were selected for qRT-PCR validation, and the validation results were consistent with the transcriptome sequencing results. Among the above genes, the VfPR4 remained up-regulated within 24 h after infection with A. alternata. Tobacco genetic transformation results indicated that the lesion symptoms of transgenic lines were milder, with lesion areas of 128.94, 110.57 and 92.92 mm2, respectively, which were significantly smaller than that of the wild type, with a lesion area of 174.32 mm2. 【Conclusion】In this study, transcriptome analysis revealed that broad beans might mainly respond to the infection of A. alternata through pathways including oxidative burst, secondary metabolites biosynthesis, phenylpropanoid biosynthesis, MAPK signaling, and plant-pathogen interaction. VfPR4 could positively regulate tobacco’s resistance to A. alternata.

Key words: broad bean (Vicia faba), Alternaria alternata, transcriptome, VfPR4, disease resistance function

Table 1

Primers used for qRT-PCR, gene cloning and vector construction"

基因Gene 引物序列Primer sequence (5′-3′) 扩增效率Efficiency (%)
qRT-PCR
Vfaba.Tiffany.R1.1g286840 F: GGTTTGGGGAGTGGGTCG 106.73
R: TAGAAGCCTCAGAAGCCGTAGC
Vfaba.Tiffany.R1.3g068200 (VfPR4) F: CCTTTTGTGGACCCGTTGG 99.07
R: GTGACCCGCCTGGTAGCC
Vfaba.Tiffany.R1.4g083240 F: GTTTTGGATGACCCCACAGG 102.75
R: CGCCATTGATTATGTTGGTGAT
Vfaba.Tiffany.R1.1g351200 F: AGTTGAGAAGATTTCATTTGAGGCT 99.43
R: ATCAGGATGAGCAATACAGTAACCC
Vfaba.Tiffany.R1.1g183400 F: CATTTTGCCACTACAGACTCTAAGG 90.74
R: TGGAGGAGAAACCGTTGTCAG
Vfaba.Tiffany.R1.6g134000 F: CAGCAAAGAAACAGGTTGAAAAG 98.66
R: CACACTTGTCATCACAGTTACCTCA
VfELF1A F: GTGAAGCCCGGTATGCTTGT 106.45
R: CTTGAGATCCTTGACTGCAACATT
NtActin F: CCTGAGGTCCTTTTCCAACCA 93.24
R: GGATTCCGGCAGCTTCCATT
基因克隆Gene cloning
VfPR4 F: ATGGAGAGCACACAGAGAAGTTTAAC
R: TTAGTCACCGCAATTAACAAAGACGT
载体构建Vector construction
VfPR4 F: AGAACACGGGGGACGAGCTCATGGAGAGCACACAGAGAAGTTTAAC
R: ACCATGGTGTCGACTCTAGAGTCACCGCAATTAACAAAGACGTAG

Table 2

Statistics and quality inspection of sequencing data"

样本
Sample
原始数据
Raw reads
过滤后数据
Clean reads
原始碱基
Raw bases
过滤后碱基
Clean bases
Q20
(%)
Q30
(%)
GC
(%)
CK-1 44713886 44544524 6707082900 6649756373 97.21 92.37 43.04
CK-2 37108856 37009168 5566328400 5528310812 97.01 92.01 43.02
CK-3 38092376 37994204 5713856400 5674495947 97.32 92.52 43.08
T6-1 41623938 41522300 6243590700 6203365542 97.19 92.36 42.81
T6-2 50863996 50705276 7629599400 7545767138 98.54 95.56 43.20
T6-3 49319542 49134708 7397931300 7333695696 97.51 93.00 43.00
T12-1 44038582 43868258 6605787300 6563061275 97.26 92.50 42.86
T12-2 38431570 38286054 5764735500 5723593977 97.22 92.45 43.02
T12-3 45024378 44864168 6753656700 6702567067 97.27 92.43 42.88
T24-1 45809802 45609948 6871470300 6807440098 97.47 92.84 42.98
T24-2 45742880 45613266 6861432000 6807387734 98.41 95.15 43.21
T24-3 48451546 48287776 7267731900 7192462021 98.61 95.66 43.24

Table 3

Statistics of alignment with reference genome"

样本
Sample
过滤后数据
Clean reads
比对到基因组的数据及占比
Total mapped (%)
比对到基因组唯一位置的数据及占比
Unique mapped (%)
CK-1 44092194 39123402 (88.73) 36596547 (83.00)
CK-2 36492758 32535363 (89.16) 30511820 (83.61)
CK-3 37415614 33617214 (89.85) 31573700 (84.39)
T6-1 40849472 36455382 (89.24) 34177712 (83.67)
T6-2 49378582 43572672 (88.24) 40509613 (82.04)
T6-3 48266952 42929051 (88.94) 40007796 (82.89)
T12-1 43210162 38477310 (89.05) 36178498 (83.73)
T12-2 37742640 33652558 (89.16) 31555095 (83.61)
T12-3 44271762 39224804 (88.60) 36739592 (82.99)
T24-1 44969738 39722019 (88.33) 37244088 (82.82)
T24-2 45022382 39229015 (87.13) 36940861 (82.05)
T24-3 47568146 41713080 (87.69) 39012843 (82.01)

Table 4

Statistics of regions alignment with reference genome"

样本
Sample
比对到外显子区域的比例
Proportion of comparison to exon
regions (%)
比对到内含子区域的比例
Proportion of comparison to intron
regions (%)
比对到基因间区域的比例
Proportion of comparison to intergenic regions (%)
CK-1 83.46 4.44 12.10
CK-2 83.75 4.27 11.98
CK-3 84.03 4.10 11.88
T6-1 83.30 4.50 12.20
T6-2 83.35 4.45 12.20
T6-3 83.52 4.37 12.11
T12-1 82.88 4.63 12.49
T12-2 83.15 4.39 12.45
T12-3 83.12 4.58 12.31
T24-1 82.19 4.76 13.05
T24-2 82.11 4.65 13.24
T24-3 81.98 4.71 13.31

Fig. 1

Differentially expressed genes at different stages after infection"

Fig. 2

GO (A) and KEGG (B) analysis of differentially expressed genes at 6 h after infection"

Fig. 3

GO (A) and KEGG (B) analysis of differentially expressed genes at 12 h after infection"

Fig. 4

GO (A) and KEGG (B) analysis of differentially expressed genes at 24 h after infection"

Fig. 5

Venn diagram and heatmap of differentially expressed genes related to disease resistance"

Fig. 6

qRT-PCR and RNA-Seq results of differentially expressed genes related to disease resistance"

Table 5

Six disease resistance related genes up-regulated within 24 h after A. alternata infection"

基因编号
Gene ID
基因注释
Gene annotation
表达水平Expression level (FPKM)
0 h 6 h 12 h 24 h
Vfaba.Tiffany.R1.3g072280 RBOHB(MAPK信号途径MAPK signaling pathway、植物-病原菌互作Plant-pathogen interaction) 0.131 0.163 0.607 1.807
Vfaba.Tiffany.R1.1g350240 PR1(MAPK信号途径MAPK signaling pathway、植物-病原菌互作Plant-pathogen interaction) 0.663 18.979 23.724 24.035
Vfaba.Tiffany.R1.1g351200 PR10 2.033 140.937 252.342 426.230
Vfaba.Tiffany.R1.1g351320 PR10 0.077 0.850 2.324 27.403
Vfaba.Tiffany.R1.1g351400 PR10 1.868 17.391 67.293 82.358
Vfaba.Tiffany.R1.3g068200 PR4 1.363 48.051 253.160 530.807

Fig. 7

VfPR4 enhanced tobacco resistance to A. alternata"

[1]
ZHOU R, HYLDGAARD B, YU X Q, ROSENQVIST E, UGARTE R M, YU S X, WU Z, OTTOSEN C O, ZHAO T M. Phenotyping of faba beans (Vicia faba L.) under cold and heat stresses using chlorophyll fluorescence. Euphytica, 2018, 214(4): 68.
[2]
DHULL S B, KIDWAI M K, NOOR R, CHAWLA P, ROSE P K. A review of nutritional profile and processing of faba bean (Vicia faba L.). Legume Science, 2022, 4(3): e129.
[3]
李仁慧, 闫智臣, 段廷玉. 蚕豆真菌病害及其研究进展. 草业科学, 2019, 36(8): 1976-1987.
LI R H, YAN Z C, DUAN T Y. Recent progress in the research of fungal diseases in broad bean. Pratacultural Science, 2019, 36(8): 1976-1987. (in Chinese)
[4]
ERTOY N. Morphological and molecular characterization of Alternaria alternata causing leaf spot in faba bean (Vicia faba L.) and determination of the disease reactions of some faba bean varieties grown in Turkey. Gesunde Pflanzen, 2023, 75(3): 637-645.
[5]
RAHMAN M Z, HONDA Y, ARASE S. Red-light-induced resistance in broad bean (Vicia faba L.) to leaf spot disease caused by Alternaria tenuissima. Journal of Phytopathology, 2003, 151(2): 86-91.
[6]
DEMERS M. Alternaria alternata as endophyte and pathogen. Microbiology, 2022, 168(3): 001153.
[7]
YU Y T, ZENG L B, HUANG L L, YAN Z, SUN K, ZHU T T, ZHU A G. First report of black leaf spot caused by Alternaria alternata on ramie in China. Journal of Phytopathology, 2016, 164(5): 358-361.
[8]
ZHANG M J, ZHENG X R, LI H, CHEN F M. Alternaria alternata, the causal agent of a new needle blight disease on Pinus bungeana. Journal of Fungi, 2023, 9: 71.
[9]
周慧珍, 荣思文, 吴玉珠, 王武, 张嘉, 陈娜, 胡军华. 青脆李果斑病病原鉴定及室内药剂筛选. 中国南方果树, 2023, 52(4): 136-140, 144.
ZHOU H Z, RONG S W, WU Y Z, WANG W, ZHANG J, CHEN N, HU J H. Identification of plum fruit spot pathogen and indoor screening of its fungicides. South China Fruits, 2023, 52(4): 136-140, 144. (in Chinese)
[10]
ANURADHA C, CHANDRASEKAR A, BACKIYARANI S, THANGAVELU R, GIRIBABU P, UMA S. Genome-wide analysis of pathogenesis-related protein 1 (PR-1) gene family from Musa spp. and its role in defense response during stresses. Gene, 2022, 821: 146334.
[11]
LUO X M, TIAN T T, FENG L, YANG X Y, LI L X, TAN X, WU W X, LI Z G, TREVES H, SERNEELS F, NG I S, TANAKA K, REN M Z. Pathogenesis-related protein 1 suppresses oomycete pathogen by targeting against AMPK kinase complex. Journal of Advanced Research, 2023, 43: 13-26.
[12]
TONÓN C, GUEVARA G, OLIVA C, DALEO G. Isolation of a potato acidic 39 kDa β-1,3-glucanase with antifungal activity against Phytophthora infestans and analysis of its expression in potato cultivars differing in their degrees of field resistance. Journal of Phytopathology, 2002, 150(4/5): 189-195.
[13]
BERTINI L, CAPORALE C, TESTA M, PROIETTI S, CARUSO C. Structural basis of the antifungal activity of wheat PR4 proteins. FEBS Letters, 2009, 583(17): 2865-2871.
[14]
ZHAI X, KONG Q, AN P, REN X. The function and mechanism of pathogenesis-related 5 protein resistance in cherry tomato in response to Alternaria alternata. Food Biotechnology, 2018, 32(3): 178-190.
[15]
LALUK K, MENGISTE T. The Arabidopsis extracellular UNUSUAL SERINE PROTEASE INHIBITOR functions in resistance to necrotrophic fungi and insect herbivory. The Plant Journal, 2011, 68(3): 480-494.
[16]
JORDÁ L, CONEJERO V, VERA P. Characterization of P69E and P69F, two differentially regulated genes encoding new members of the subtilisin-like proteinase family from tomato plants. Plant Physiology, 2000, 122(1): 67-73.
[17]
GHOSH M. Antifungal properties of haem peroxidase from Acorus calamus. Annals of Botany, 2006, 98(6): 1145-1153.
[18]
GONG S, TANG J Q, XIAO Y, LI T Z, ZHANG Q L. The fungal effector AaAlta1 inhibits PATHOGENESIS-RELATED PROTEIN10- 2-mediated callose deposition and defense responses in apple. Plant Physiology, 2024, 197(1): kiae599.
[19]
DONALDSON P A, ANDERSON T, LANE B G, DAVIDSON A L, SIMMONDS D H. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotina sclerotiorum. Physiological & Molecular Plant Pathology, 2001, 59(6): 297-307.
[20]
HU X, BIDNEY D L, YALPANI N, DUVICK J P, CRASTA O, FOLKERTS O, LU G H. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiology, 2003, 133(1): 170-181.
[21]
CHRISTENSEN A B, CHO B H, NAESBY M, GREGERSEN P L, BRANDT J, MADRIZ-ORDEÑANA K, COLLINGE D B, THORDAL-CHRISTENSEN H. The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Molecular Plant Pathology, 2002, 3(3): 135-144.
[22]
卞晓春, 王凡, 刘陈玮, 徐仁超, 陆红臣, 吴春芳. 江苏省蚕豆叶斑病病原菌的分离鉴定、生物学特性与防控药剂筛选. 福建农业学报, 2024, 39(11): 1298-1305.
BIAN X C, WANG F, LIU C W, XU R C, LU H C, WU C F. Identification, biological characteristics, and effective fungicide of pathogen causing leaf spot disease on Vicia faba in Jiangsu Province. Fujian Journal of Agricultural Sciences, 2024, 39(11): 1298-1305. (in Chinese)
[23]
王凡, 卞晓春, 刘陈玮, 徐仁超, 陆红臣, 吴春芳. 南通市蚕豆赤斑病病原菌鉴定及其抑菌药剂筛选. 江苏农业学报, 2024, 40(10): 1810-1817.
WANG F, BIAN X C, LIU C W, XU R C, LU H C, WU C F. Identification and screening of antifungal agents for the pathogen causing broad bean chocolate spot in Nantong City. Jiangsu Journal of Agricultural Sciences, 2024, 40(10): 1810-1817. (in Chinese)
[24]
蔚书涵, 秦小杰, 吴其超, 李玲, 臧德奎, 马燕. 芍药响应细极链格孢侵染的转录组分析. 中国农业科学, 2024, 57(15): 3035-3052. doi: 10.3864/j.issn.0578-1752.2024.15.010.
YU S H, QIN X J, WU Q C, LI L, ZANG D K, MA Y. Transcriptome analysis of Paeonia lactiflora in response to Alternaria tenuissima infection. Scientia Agricultura Sinica, 2024, 57(15): 3035-3052. doi: 10.3864/j.issn.0578-1752.2024.15.010. (in Chinese)
[25]
CHEN S F, ZHOU Y Q, CHEN Y R, GU J. Fastp: An ultra- fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17): i884-i890.
[26]
KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015, 12(4): 357-360.
[27]
PERTEA M, PERTEA G M, ANTONESCU C M, CHANG T C, MENDELL J T, SALZBERG S L. StringTie enables improved reconstruction of a transcriptome from RNA-Seq reads. Nature Biotechnology, 2015, 33(3): 290-295.
[28]
LI B, DEWEY C N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011, 12: 323.
[29]
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biology, 2014, 15(12): 550.
[30]
ASHBURNER M, BALL C A, BLAKE J A, BOTSTEIN D, BUTLER H, CHERRY J M, DAVIS A P, DOLINSKI K, DWIGHT S S, EPPIG J T, et al. Gene ontology: Tool for the unification of biology. Nature Genetics, 2000, 25(1): 25-29.
[31]
OGATA H, GOTO S, SATO K, FUJIBUCHI W, BONO H, KANEHISA M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 1999, 27(1): 29-34.
[32]
LIU Y, XIN J J, LIU L N, SONG A P, GUAN Z Y, FANG W M, CHEN F D. A temporal gene expression map of Chrysanthemum leaves infected with Alternaria alternata reveals different stages of defense mechanisms. Horticulture Research, 2020, 7: 23.
[33]
OUYANG H, SUN T R, GUO M R, ZHANG W D, GUO W B, JIANG Y, CHENG S B, CHEN G G. Transcriptome analysis of Korla fragrant pear reveals a comprehensive signaling network in response to Alternaria alternata infection. International Journal of Agriculture and Biology, 2021, 25(6): 1173-1186.
[34]
LIU S Y, DAI L J, QU G Z, LU X M, PAN H, FU X Y, DONG A R, YANG L B. Integrative transcriptome and WGCNA analysis reveal key genes mainly in response to Alternaria alternata in Populus simonii × P. nigra. Frontiers in Plant Science, 2025, 16: 1540718.
[35]
CAI G H, ZHANG Y, HUANG L Y, WANG N. Uncovering the role of PdePrx12 peroxidase in enhancing disease resistance in poplar trees. Journal of Fungi, 2023, 9: 410.
[36]
黄颖. 山新杨响应细链格孢菌侵染的转录组分析及PdbMYB85基因功能的研究[D]. 哈尔滨: 东北林业大学, 2022.
HUANG Y. Transcriptome analysis of Populus davidiana × P. bolleana in response to Alternaria alternata infection and function analysis of PdbMYB85[D]. Harbin: Northeast Forestry University, 2022. (in Chinese)
[37]
李婕婷. 杜鹃花瓣对链格孢菌侵染的转录组和代谢组分析及植物源制剂抑菌活性研究[D]. 贵阳: 贵州师范大学, 2023.
LI J T. Transcriptome and metabolome analysis of rhododendron petals on Alternaria infection and antibacterial activity of plant derived preparations[D]. Guiyang: Guizhou Normal University, 2023. (in Chinese)
[38]
ZHANG X B, LIU C J. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Molecular Plant, 2015, 8(1): 17-27.
[39]
SUN T R, YANG W T, ZHANG W D, LIU Y X, LI L L, CHENG S B, CHEN G G. Phenylpropanoid pathway mediated the defense response of ‘Korla’ fragrant pear against Alternaria alternata infection. Postharvest Biology and Technology, 2025, 220: 113318.
[40]
RANJAN A, WESTRICK N M, JAIN S, PIOTROWSKI J S, RANJAN M, KESSENS R, STIEGMAN L, GRAU C R, CONLEY S P, SMITH D L, KABBAGE M. Resistance against Sclerotinia sclerotiorum in soybean involves a reprogramming of the phenylpropanoid pathway and up-regulation of antifungal activity targeting ergosterol biosynthesis. Plant Biotechnology Journal, 2019, 17(8): 1567-1581.
[41]
XU W J, XU X Y, HAN R, WANG X L, WANG K, QI G, MA P T, KOMATSUDA T, LIU C. Integrated transcriptome and metabolome analysis reveals that flavonoids function in wheat resistance to powdery mildew. Frontiers in Plant Science, 2023, 14: e1125194.
[42]
杨敏. 多组学揭示魔芋响应胡萝卜软腐果胶杆菌侵染的机制研究[D]. 昆明: 云南农业大学, 2023.
YANG M. Multi-omics profiling reveals the mechanism of Amorphophallus spp. response to Pectobacterium carotovorum subsp. carotovorum infection[D]. Kunming: Yunnan Agricultural University, 2023. (in Chinese)
[43]
LIU F, ZENG M Z, SUN Y J, CHEN Z Y, CHEN Z D, WANG L, CUI J R, ZHANG F S, LV D, CHEN X, XU Y P, DUAN K X, WANG Y, WANG Y C. BAK 1 protects the receptor-like kinase BIR2 from SNIPER2a/b-mediated degradation to promote pattern-triggered immunity in Nicotiana benthamiana. The Plant Cell, 2023, 35(9): 3566-3584.
[44]
SUN Y D, LI L, MACHO A P, HAN Z F, HU Z H, ZIPFEL C, ZHOU J M, CHAI J J. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science, 2013, 342(6158): 624-628.
[45]
CUI Y N, QIAN H P, YIN J H, XU C W, LUO P Y, ZHANG X, YU M, SU B D, LI X J, LIN J X. Single-molecule analysis reveals the phosphorylation of FLS2 governs its spatiotemporal dynamics and immunity. eLife, 2024, 12: RP91072.
[46]
ERCOLI M F, LUU D D, RIM E Y, SHIGENAGA A, DE ARAUJO A T, CHERN M, JAIN R, RUAN R, JOE A, STEWART V, RONALD P. Plant immunity:Rice XA21-mediated resistance to bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(8): e2121568119.
[47]
MENG X Z, ZHANG S Q. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology, 2013, 51: 245-266.
[48]
SUN L F, ZHANG J. Regulatory role of receptor-like cytoplasmic kinases in early immune signaling events in plants. FEMS Microbiology Reviews, 2020, 44(6): 845-856.
[49]
NITTA Y, DING P T, ZHANG Y L. Identification of additional MAP kinases activated upon PAMP treatment. Plant Signaling & Behavior, 2014, 9(11): e976155.
[50]
SHI H, LI Q Y, LUO M Y, YAN H J, XIE B, LI X, ZHONG G T, CHEN D S, TANG D Z. BRASSINOSTEROID-SIGNALING KINASE1 modulates MAP KINASE15 phosphorylation to confer powdery mildew resistance in Arabidopsis. The Plant Cell, 2022, 34(5): 1768-1783.
[51]
LI J J, LUO C, YANG X Z, PENG L H, LU T T, YANG J H, ZHANG X J, XIE Y Q, YANG Z Y, XU F, HE X H. Genome-wide identification of the mango pathogenesis-related 1 (PR1) gene family and functional analysis of MiPR1A genes in transgenic Arabidopsis. Scientia Horticulturae, 2023, 321: 112254.
[52]
WANG P, ZHOU J, SUN W B, LI H Y, LI D W, ZHUGE Q. Characteristics and function of the pathogenesis-related protein 1 gene family in poplar. Plant Science, 2023, 336: 111857.
[53]
肖胜华, 董贤镘, 彭鑫, 李安子, 闭兆福, 廖铭静, 黄礼豪, 管倩倩, 胡琴, 朱龙付. 转录因子GhWRKY41促进水杨酸合成增强棉花对黄萎病菌的抗性. 作物学报, 2024, 50(10): 2447-2457.
XIAO S H, DONG X M, PENG X, LI A Z, BI Z F, LIAO M J, HUANG L H, GUAN Q Q, HU Q, ZHU L F. Transcription factor GhWRKY41 enhances cotton resistance to Verticillium dahliae by promoting SA synthesis. Acta Agronomica Sinica, 2024, 50(10): 2447-2457. (in Chinese)
[54]
XIE W Y, KE Y G, CAO J B, WANG S P, YUAN M. Knock out of transcription factor WRKY53 thickens sclerenchyma cell walls, confers bacterial blight resistance. Plant Physiology, 2021, 187(3): 1746-1761.
[55]
GUO S Y, ZHANG Y Q, LI M, ZENG P, ZHANG Q, LI X, XU Q L, LI T, WANG X J, KANG Z S, ZHANG X M. TaBln1, a member of the Blufensin family, negatively regulates wheat resistance to stripe rust by reducing Ca2+ influx. Plant Physiology, 2022, 189(3): 1380-1396.
[56]
WANG N L, XIAO B Z, XIONG L Z. Identification of a cluster of PR4-like genes involved in stress responses in rice. Journal of Plant Physiology, 2011, 168(18): 2212-2224.
[57]
LU H C, LIN J H, CHUA A C N, CHUNG T Y, TSAI I C, TZEN J T C, CHOU W M. Cloning and expression of pathogenesis-related protein 4 from jelly fig (Ficus awkeotsang Makino) achenes associated with ribonuclease, chitinase and anti-fungal activities. Plant Physiology and Biochemistry, 2012, 56: 1-13.
[58]
裴晓兔. 罹病茎瘤芥PR-4蛋白基因的克隆与诱导表达分析[D]. 重庆: 重庆大学, 2013.
PEI X T. Cloning and induced expression analysis of PR-4 protein gene in diseased stem mustard (Brassica juncea var. tumida Tsen)[D]. Chongqing: Chongqing University, 2013. (in Chinese)
[59]
王自娥, 李有玉, 邓婕, 王瀚林, 孙皓, 陈晓华, 葛锋, 刘迪秋. 岷江百合病程相关蛋白4基因及其启动子的克隆与分析. 植物生理学报, 2022, 58(9): 1747-1756.
WANG Z E, LI Y Y, DENG J, WANG H L, SUN H, CHEN X H, GE F, LIU D Q. Isolation and analysis of pathogenesis-related protein 4 gene and its promoter from Lilium regale. Plant Physiology Journal, 2022, 58(9): 1747-1756. (in Chinese)
[60]
LI M Y, JIAO Y T, WANG Y T, ZHANG N, WANG B B, LIU R Q, YIN X, XU Y, LIU G T. CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine (Vitis vinifera L.). Horticulture Research, 2020, 7: 149.
[1] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[2] SUN Ping, ZHU WenCan, LIN XianRui, WU JiaQi, CAO YiWen, CHEN ChenFei, WANG Yi, ZHU JianXi, JIA HuiJuan, QIAN MinJie, SHEN JianSheng. Effects of Rainy and Low Light Conditions on Coloration and Flavonoid Accumulation in Peach Peel Based on Metabolomic and Transcriptomic Analyses [J]. Scientia Agricultura Sinica, 2025, 58(6): 1173-1194.
[3] XIE LuLu, LI Fu, ZHANG SiYuan, GAO JianChang. Analysis of Conserved Genes in Adventitious Root Formation Based on Cross Species Transcriptomes [J]. Scientia Agricultura Sinica, 2025, 58(6): 1195-1209.
[4] GAO YanHao, WANG TingTing, BAI WeiWei, DU XingJie, LIU Xian, QIN BenYuan, FU Tong, SUN Yu, GAO TengYun, ZHANG TianLiu. The Combination of Lipidome and Transcriptome Revealed the Differential Expression Patterns of Lipid Characteristics in Different Muscle Tissues for Nanyang Cattle [J]. Scientia Agricultura Sinica, 2025, 58(6): 1239-1258.
[5] MU YingTong, LU JingShi, ZHANG YuTong, SHI FengLing. Identification of Key Drought-Responsive Genes in Upright Medicago ruthenica Sojak cv. Zhilixing Based on Transcriptome Sequencing and WGCNA [J]. Scientia Agricultura Sinica, 2025, 58(21): 4528-4543.
[6] PAN Yuan, WANG De, LIU Nan, MENG XiangLong, DAI PengBo, LI Bo, HU TongLe, WANG ShuTong, CAO KeQiang, WANG YaNan. Evaluation of the Effectiveness of Two High-Throughput Sequencing Techniques in Identifying Apple Viruses and Identification of Two Novel Viruses [J]. Scientia Agricultura Sinica, 2025, 58(2): 266-280.
[7] LIN Yan, ZHENG LingLing, TIAN Jia, WEN Yue, CHEN Chen, WANG Lei. Based on Transcriptomics and Proteomics to Provide Insights into the Molecular Mechanisms of Calyx Abscission in Korla Xiangli [J]. Scientia Agricultura Sinica, 2025, 58(18): 3744-3765.
[8] DONG Xue, CHEN MengQiu, SHAO Jin, WU XueYou, TANG PeiAn. Construction of a Differential Gene Expression and Quality Regulation Network in Stored Rice Grain Using WGCNA [J]. Scientia Agricultura Sinica, 2025, 58(14): 2885-2903.
[9] CAO YanYong, CHENG ZeQiang, MA Juan, YANG WenBo, ZHU WeiHong, SUN XinYan, LI HuiMin, XIA LaiKun, DUAN CanXing. Integrating Transcriptomic and Metabolomic Analyses Reveals Maize Responses to Stalk Rot Caused by Fusarium proliferatum [J]. Scientia Agricultura Sinica, 2025, 58(1): 75-90.
[10] QI RenJie, NING Yu, LIU Jing, LIU ZhiYang, XU Hai, LUO ZhiDan, CHEN LongZheng. Identification and Analysis of Genes Related to Bitter Gourd Saponin Synthesis Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2024, 57(9): 1779-1793.
[11] LIN Wei, WU ShuiJin, LI YueSen. Transcriptome and Proteome Association Analysis to Revealthe Molecular Mechanism of Baxi Banana Seedlings in Response to Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(8): 1575-1591.
[12] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[13] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[14] MA JingE, XIONG XinWei, ZHOU Min, WU SiQi, HAN Tian, RAO YouSheng, WANG ZhangFeng, XU JiGuo. Full-Length Transcriptomic Analysis of Chicken Pituitary Reveals Candidate Genes for Testicular Trait [J]. Scientia Agricultura Sinica, 2024, 57(20): 4130-4144.
[15] YIN JunLiang, LI JingYi, HAN Shuo, YANG PeiHua, MA JiaWei, LIU YiQing, HU HaiJun, ZHU YongXing. Identification of Ginger (Zingiber officinale Roscoe) NHX Gene Family Members and Characterization of Their Expression Patterns in Silicon Alleviating Salt Stress [J]. Scientia Agricultura Sinica, 2024, 57(19): 3848-3869.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!