Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (22): 4673-4687.doi: 10.3864/j.issn.0578-1752.2025.22.009

• PLANT PROTECTION • Previous Articles     Next Articles

Structure and Herbicidal Activity of 3,5-Dimethylorsellinic Acid-Derived Meroterpenoids from Penicillium sclerotiorum HY5

CAI HaiLin1(), HUANG XinRong2, ZENG WeiAi1, PENG ZhiXin2, ZHAO AJuan1, BO ChunBin1, XIANG ShiPeng1, GAO PengCheng3, ZHANG ChengSheng2, ZHAO DongLin2()   

  1. 1 Changsha Tobacco Company of Hunan Province, Changsha 410011
    2 Institute of Tobacco Research, Chinese Academy of Agricultural Sciences/National Agricultural Environmental Microbial Resource Bank (Shandong)/Qingdao Agricultural Microbial Seed Industry Technology Innovation Center, Qingdao 266101, Shandong
    3 Shandong Linyi Tobacco Co., Ltd., Linyi 276001, Shandong
  • Received:2025-08-12 Accepted:2025-09-27 Online:2025-11-16 Published:2025-11-21
  • Contact: ZHAO DongLin

Abstract:

【Background】3,5-Dimethylorsellinic acid (DMOA)-derived meroterpenoids exhibit diverse chemical structures and broad biological activities. However, their agricultural bioactivities have rarely been reported. Chemical herbicides often lead to increased weed resistance and environmental problem, highlighting the urgent need for the development of novel bioherbicides. 【Objective】The objective of this study is to explore DMOA-derived meroterpenoids from Penicillium sclerotiorum HY5, evaluate their herbicidal activity, and preliminarily elucidate their modes of action, thus to provide lead molecules for the development of novel natural-product herbicides. 【Method】DMOA-derived meroterpenoids were isolated using normal/ reversed-phase silica gel column chromatography (CC), thin-layer chromatography, Sephadex LH-20 gel CC, and semi- preparative high-performance liquid chromatography (HPLC). The structures of the compounds were identified via nuclear magnetic resonance (NMR) and mass spectrometry (MS). The herbicidal activity of the compounds was assessed using a seed germination inhibition assay against Eleusine indica, Setaria viridis, Amaranthus retroflexus, and Trifolium repens. The EC50 values for the bioactive compounds were determined by nonlinear regression analysis of dose-response curves. The herbicidal mechanism of the bioactive compounds was analyzed using a combined transcriptomic-metabolomic approach. 【Result】Nine DMOA-derived meroterpenoids were obtained from the HY5 fermentation extract, namely berkeleydione (1), preaustinoid A3 (2), miniolutelide B (3), 22-epoxyberkeleydione (4), 22-deoxyminiolutelide B (5), miniolutelide C (6), berkeleyacteal (7), preaustinoid A2 (8), and berkeleyacetal A (9). Compound 4 showed a significant promoting effect on the growth of the dicotyledonous weed T. repens, with the promotion rates of radicle and germ growth reaching 30.5% and 55.1%, respectively. Compounds 3, 4, 5, and 6 exhibited significant inhibitory effects on the germination of monocot weed seeds (S. viridis and E. indica). Notably, compound 6 showed the strongest herbicidal activity, with EC50 values of 19.1 and 17.9 μg·mL-1 for radicle and germ elongation of E. indica respectively, even stronger than the positive control glyphosate (30.9 and 66.2 μg·mL-1). Additionally, the compounds demonstrated more potent herbicidal activity against radicle elongation compared to germ. Further studies revealed that compound 6 inhibits weed germination through dual regulatory mechanisms: (1) degrading JAZ proteins in the jasmonic acid signaling pathway, thereby promoting abscisic acid synthesis, and (2) disrupting the tryptophan metabolism pathway, leading to abnormal serotonin accumulation and ultimately suppressing weed growth. 【Conclusion】DMOA-derived meroterpenoids possess novel structures and exhibit significant inhibitory effects on monocot weeds, showing promise for development as new natural-product herbicides.

Key words: Penicillium sclerotiorum, DMOA-derived meroterpenoids, structural identification, herbicidal activity, modes of action, jasmonic acid signaling pathway, tryptophan metabolism pathway

Table 1

The primer sequences of qPCR"

引物名称Primer name 引物序列Primer sequence
JAZ-F TGCCGATAGCAAGGAGGAAT
JAZ-R ATTTCTCACCGTCTGCTTGC
EC4.1.1.28 (1)-F GGGTCTCGTGCCTACTTACA
EC4.1.1.28 (1)-R GCATTGAACATGGCAGCAAC
EC4.1.1.28 (2)-F TGAAGCCCACCGTGTTCAT
EC4.1.1.28 (2)-R AGCCCTAACTTCTTCGCCTT
EC2.1.1.4-F GGCACTCAAGTGTGCAGTAG
EC2.1.1.4-R TTCAGAAGCCTCTGCACGTA
Actin-F TCCCTGGTATCGCTGACCGTA
Actin-R CCCTTTGAGATCCACATCTGTT

Fig. 1

The chemical structures of DMOA-derived meroterpenoids identified from HY5"

Fig. 2

Inhibitory activity of the compounds (200 μg·mL-1) on seed germination of four weed species"

Fig. 3

The inhibitory effect of the compounds on seed germination"

Table 2

Inhibition rates of compounds 3, 4 and 6 on radicle and germ elongations of E. indica"

指标
Index
化合物
Compound
供测浓度Test concentration (μg·mL-1) EC50 (μg·mL-1)
10 20 30 40 50 60
胚根抑制率
Inhibition rate for radicle (%)
草甘膦Glyphosate 26.0±0.6b 41.5±0b 48.9±0c 57.9±2.3c 60.7±0.4c 61.7±7.0c 30.9
乙草胺Acetochlor 74.6±1.0a 78.1±1.3a 79.0±0.9b 79.5±1.9b 80.7±1.8b 81.6±0.8b <10.0
3 16.7±3.6c 21.0±2.2c 23.2±1.8d 24.1±1.7e 28.1±2.0e 48.7±3.5d 107.9
4 9.0±1.4d 10.6±0.1d 19.0±2.1e 30.0±4.2d 34.2±1.4d 36.2±1.5e 89.3
6 23.7±2.8b 42.0±3.2b 83.7±0.6a 87.1±1.0a 91.2±0.7a 92.9±0.7a 19.1
胚芽抑制率
Inhibition rate for germ (%)
草甘膦Glyphosate 21.0±3.2c 25.0±0c 39.3±1.9c 41.6±4.4c 44.7±8.1b 47.1±5.2b 66.2
乙草胺Acetochlor 79.2±0.6a 81.5±0.4a 83.0±0.1a 84.4±0.7a 85.1±1.0a 86.3±1.7a <10.0
3 7.7±1.0d 9.6±1.2d 10.4±0.4d 19.5±2.3d 23.3±0.6c 37.2±5.3c 89.6
4 1.8±0.5e 2.1±1.1e 6.7±0.3e 9.8±0.5e 14.6±2.2d 25.3±3.1d 94.5
6 27.4±3.0b 55.8±3.6b 73.3±1.2b 75.1±1.2b 78.1±2.0a 80.1±0.7a 17.9

Table 3

Summary of RNA-Seq reads in control (CK_1-3) and compound 6 (6_1-3) groups of E. indica"



样品
Sample
原始测序数据
总条目数
Raw reads
原始测序
总数据量
Raw bases
质控后测序数据
总条目数
Clean reads
质控后测序
总数据量
Clean bases
错误率
Error rate
(%)
Q30百分比
Q30 (%)
GC碱基含量
GC content
(%)
CK_1 45487752 6868650552 45141502 6763367603 0.0127 94.76 50.55
CK_2 52780488 7969853688 52378850 7852792340 0.0126 94.90 49.58
CK_3 43547122 6575615422 43203412 6480763587 0.0127 94.80 49.92
6_1 42260856 6381389256 41909208 6285904222 0.0129 94.52 50.60
6_2 44006146 6644928046 43647696 6548403658 0.0129 94.38 50.51
6_3 46373380 7002380380 46009254 6903393150 0.0125 95.09 50.70

Fig 4

Transcriptomic and metabolomic analyses of E. indica treated with compound 6"

Fig. 5

Verification of the expression levels of selected genes using qRT-PCR"

[1]
李香菊. 近年我国农田杂草防控中的突出问题与治理对策. 植物保护, 2018, 44(5): 77-84.
LI X J. Main problems and management strategies of weeds in agricultural fields in China in recent years. Plant Protection, 2018, 44(5): 77-84. (in Chinese)
[2]
STOKSTAD E. Jury verdicts cloud future of popular herbicide. Science, 2019, 364(6442): 717-718.
[3]
强胜. 中国杂草生物学研究的新进展. 杂草学报, 2018, 36(2): 1-9.
QIANG S. New progresses on studies of weed biology in China. Journal of Weed Science, 2018, 36(2): 1-9. (in Chinese)
[4]
DUKE S O, DAYAN F E. The search for new herbicide mechanisms of action: Is there a ‘holy grail’? Pest Management Science, 2022, 78(4): 1303-1313.
[5]
邵旭升, 杜少卿, 李忠, 钱旭红. 中国绿色农药的研究和发展. 世界农药, 2020, 42(4): 16-24.
SHAO X S, DU S Q, LI Z, QIAN X H. Research and development of green pesticides in China. World Pesticides, 2020, 42(4): 16-24. (in Chinese)
[6]
TAKANO H K, DAYAN F E. Glufosinate-ammonium: A review of the current state of knowledge. Pest Management Science, 2020, 76(12): 3911-3925.
[7]
刘璐, 朱哲远, 李颖曦, 王颉, 彭迪. 微生物除草剂的研究进展. 生物技术通报, 2024, 40(9): 161-171.
LIU L, ZHU Z Y, LI Y X, WANG J, PENG D. Research progress in microbial herbicides. Biotechnology Bulletin, 2024, 40(9): 161-171. (in Chinese)
[8]
CIMMINO A, MASI M, EVIDENTE M, SUPERCHI S, EVIDENTE A. Fungal phytotoxins with potential herbicidal activity: Chemical and biological characterization. Natural Product Reports, 2015, 32(12): 1629-1653.
[9]
SPARKS T C, DUKE S O. Structure simplification of natural products as a lead generation approach in agrochemical discovery. Journal of Agricultural and Food Chemistry, 2021, 69(30): 8324-8346.
[10]
VURRO M, BOARI A, CASELLA F, ZONNO M C. Fungal phytotoxins in sustainable weed management. Current Medicinal Chemistry, 2018, 25(2): 268-286.
[11]
ZHAO M, TANG Y, XIE J, ZHAO Z, CUI H. Meroterpenoids produced by fungi: Occurrence, structural diversity, biological activities, and their molecular targets. European Journal of Medicinal Chemistry, 2021, 209: 112860.
[12]
BARRA L, ABE I. Chemistry of fungal meroterpenoid cyclases. Natural Product Reports, 2021, 38(3): 566-585.
[13]
QI B, LIU X, MO T, ZHU Z, LI J, WANG J, SHI X, ZENG K, WANG X, TU P, ABE I, SHI S. 3,5-Dimethylorsellinic acid derived meroterpenoids from Penicillium chrysogenum MT-12, an endophytic fungus isolated from Huperzia serrata. Journal of Natural Products, 2017, 80(10): 2699-2707.
[14]
VALIANTE V, MATTERN D J, SCHUFFLER A, HORN F, WALTHER G, SCHERLACH K, PETZKE L, DICKHAUT J, GUTHKE R, HERTWECK C, NETT M, THINES E, BRAKHAGE A A. Discovery of an extended austinoid biosynthetic pathway in Aspergillus calidoustus. ACS Chemical Biology, 2017, 12(5): 1227-1234.
[15]
WANG W, WANG M, WANG X B, LI Y Q, DING J L, LAN M X, GAO X, ZHAO D L, ZHANG C S, WU G X. Phytotoxic azaphilones from the mangrove-derived fungus Penicillium sclerotiorum HY5. Frontiers in Microbiology, 2022, 13: 880874.
[16]
HUANG X R, JIANG C N, WANG H S, GU G, WANG M, SUI X N, SI T, ZHANG Z F, ZHANG P, ZHAO D L. Herbicidal sorbicillinoid analogs cause lignin accumulation in Aspergillus aculeatus TE- 65L. Journal of Agricultural and Food Chemistry, 2024, 72(38): 21102-21111.
[17]
代义乐, 陈可可, 刘东丽, 蔡加岭, 吴越, 张辉, 张继. 链霉菌YJ-81中活性成分的分离、鉴定及除草活性. 农药学学报, 2023, 25(5): 1104-1112.
DAI Y L, CHEN K K, LIU D L, CAI J L, WU Y, ZHANG H, ZHANG J. Isolation and characterization of a herbicidal component produced by Streptomyces sp. YJ-81. Chinese Journal of Pesticide Science, 2023, 25(5): 1104-1112. (in Chinese)
[18]
REN Y, YU G, SHI C, LIU L, GUO Q, HAN C, ZHANG D, ZHANG L, LIU B, GAO H, et al. Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses. iMeta, 2022, 1(2): e12.
[19]
CHEN J C, HUANG H J, WEI S H, HUANG Z F, WANG X, ZHANG C X. Investigating the mechanisms of glyphosate resistance in goosegrass (Eleusine indica (L.) Gaertn.) by RNA sequencing technology. The Plant Journal, 2017, 89(2): 407-415.
[20]
STIERLE D B, STIERLE A A, HOBBS J D, STOKKEN J, CLARDY J. Berkeleydione and berkeleytrione, new bioactive metabolites from an acid mine organism. Organic Letters, 2004, 6(6): 1049-1052.
[21]
LO H C, ENTWISTLE R, GUO C J, AHUJA M, SZEWCZYK E, HUNG J H, CHIANG Y M, OAKLEY B R, WANG C C C. Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans. Journal of the American Chemical Society, 2012, 134(10): 4709-4720.
[22]
IIDA M, OOI T, KITO K, YOSHIDA S, KANOH K, SHIZURI Y, KUSUMI T. Three new polyketide-terpenoid hybrids from Penicillium sp. Organic Letters, 2008, 10(5): 845-848.
[23]
HOANG T P T, ROULLIER C, BOUMARD M C, DU PONT T R, NAZIH H, GALLARD J F, POUCHUS Y F, BENIDDIR M A, GROVEL O. Metabolomics-driven discovery of meroterpenoids from a mussel-derived Penicillium ubiquetum. Journal of Natural Products, 2018, 81(11): 2501-2511.
[24]
LI J, YANG X, LIN Y Y, YUAN J, LU Y J, ZHU X, LI J, LI M F, LIN Y C, HE J G, LIU L. Meroterpenes and azaphilones from marine mangrove endophytic fungus Penicillium 303#. Fitoterapia, 2014, 97: 241-246.
[25]
FENG Q M, YU Y, TANG M X, ZHANG T Y, ZHANG M Y, WANG H F, HAN Y Q, ZHANG Y X, CHEN G, PEI Y H. Four new hybrid polyketide-terpenoid metabolites from the Penicillium sp. SYPF 7381 in the rhizosphere soil of Pulsatilla chinensis. Fitoterapia, 2018, 125: 249-257.
[26]
MATSUDA Y, AWAKAWA T, WAKIMOTO T, ABE I. Spiro-ring formation is catalyzed by a multifunctional dioxygenase in austinol biosynthesis. Journal of the American Chemical Society, 2013, 135(30): 10962-10965.
[27]
STIERLE D B, STIERLE A A, PATACINI B. The berkeleyacetals, three meroterpenes from a deep water acid mine waste Penicillium. Journal of Natural Products, 2007, 70(11): 1820-1823.
[28]
时杰, 余玥, 刘冰, 李文兰. 真菌来源杂萜类化合物的研究进展. 中国药学杂志, 2024, 59(6): 476-485.
SHI J, YU Y, LIU B, LI W L. Research progress of meroterpenoids produced by fungi. Chinese Pharmaceutical Journal, 2024, 59(6): 476-485. (in Chinese)
[29]
韩海燕. 大型真菌中含苔色酸核心骨架杂萜类化合物的生物合成研究[D]. 哈尔滨: 东北林业大学, 2024.
HAN H Y. Biosynthesis of meroterpenoids containing an orsellinic acid backbone in macrofungi[D]. Harbin: Northeast Forestry University, 2024. (in Chinese)
[30]
龙涛. 一类DMOA衍生杂萜核心骨架的合成[D]. 贵阳: 贵州大学, 2024.
LONG T. Synthesis of a class of DMOA-derived hybrid terpenoid core skeletons[D]. Guiyang: Guizhou University, 2024. (in Chinese)
[31]
GAN D, LIU J Q, YANG Y J, WANG C Y, ZHU L, LI C Z, CAI L, DING Z T. Phytotoxic meroterpenoids with herbicidal activities from the phytopathogenic fungus Pseudopestalotiopsis theae. Phytochemistry, 2023, 206: 113522.
[32]
DARMA R, SHANG Z, BRACEGIRDLE J, MOGGACH S, MCDONALD M C, PIGGOTT A M, SOLOMON P S, CHOOI Y H. Transcriptomics-driven discovery of new meroterpenoid rhynchospenes involved in the virulence of the barley pathogen Rhynchosporium commune. ACS Chemical Biology, 2025, 20(2): 421-431.
[33]
HUANG Z H, LIANG X, LI C J, GU Q, MA X, QI S H. Talaromynoids A-I, highly oxygenated meroterpenoids from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517 and their lipid accumulation inhibitory activities. Journal of Natural Products, 2021, 84(10): 2727-2737.
[34]
WU Y Z, XIA G Y, XIA H, WANG L Y, WANG Y N, LI L, SHANG H C, LIN S. Seco and nor-seco isodhilarane-type meroterpenoids from Penicillium purpurogenum and the configuration revisions of related compounds. Journal of Natural Products, 2022, 85(1): 248-255.
[35]
WANG X D, LI N, ZAN T X, XU K, GAO S H, YIN Y X, YAO M H, WANG F. Genome-wide analysis of the TIFY family and function of CaTIFY7 and CaTIFY10b under cold stress in pepper (Capsicum annuum L.). Frontiers in Plant Science, 2023, 14: 1308721.
[36]
PAN J J, HU Y R, WANG H P, GUO Q, CHEN Y N, HOWE G A, YU D Q. Molecular mechanism underlying the synergetic effect of jasmonate on abscisic acid signaling during seed germination in Arabidopsis. The Plant Cell, 2020, 32(12): 3846-3865.
[37]
PELAGIO-FLORES R, ORTIZ-CASTRO R, MENDEZ-BRAVO A, MACIAS-RODRIGUEZ L, LOPEZ-BUCIO J. Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant and Cell Physiology, 2011, 52(3): 490-508.
[38]
WAN J P, ZHANG P, SUN L L, LI S, WANG R L, ZHOU H K, WANG W Y, XU J. Involvement of reactive oxygen species and auxin in serotonin-induced inhibition of primary root elongation. Journal of Plant Physiology, 2018, 229: 89-99.
[39]
PAN J J, WANG H P, YOU Q G, CAO R, SUN G L, YU D Q. Jasmonate-regulated seed germination and crosstalk with other phytohormones. Journal of Experimental Botany, 2023, 74(4): 1162-1175.
[1] FU Bing,WANG Mei,LIU JianYang,LIN Wei,ZHANG ChengSheng,ZHAO DongLin. Secondary Metabolites from a Marine-Derived Fungus Aspergillus versicolor and Their Anti-Phytopathogenic Bacterial Activity [J]. Scientia Agricultura Sinica, 2020, 53(19): 3964-3974.
[2] MA Shu-jie, LIU Lin, LU Xiao-peng, MA Zhi-qing, ZHANG Xing. Herbicidal Activities of Alkaloids from Cephalotaxus sinensis [J]. Scientia Agricultura Sinica, 2016, 49(19): 3746-3753.
[3] ZHANG Liang, ZHANG Jing-ze. Isolation and Purification of Active Compound from Trichoderma viridescens and Its Inhibitory Activities Against Phytopathogens [J]. Scientia Agricultura Sinica, 2015, 48(5): 882-888.
[4] ZHANG Li-Hui, FENG Jiang-Lan, DONG Jin-Gao. Optimization of Solid Fermentation of Botrytis cinerea BC7-3 Strain [J]. Scientia Agricultura Sinica, 2011, 44(16): 3477-3484.
[5] . Effect of dietary manganese source on carcass traits and meat quality of broilers and modes of action [J]. Scientia Agricultura Sinica, 2007, 40(7): 1504-1514 .
[6] ,. The Effect of the Mycotoxin of α,β-dehydrocurvularin from Curvularia eragrostidis on PS II in Digitaria sanguinalis [J]. Scientia Agricultura Sinica, 2005, 38(07): 1373-1378 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!