Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (21): 4305-4316.doi: 10.3864/j.issn.0578-1752.2025.21.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Origin, Evolution and Spread of Crop Buckwheat

WEI YiMin1(), ZHOU MeiLiang2(), TANG Yu3   

  1. 1 Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    3 Sichuan Tourism College, Chengdu 610100
  • Received:2025-04-14 Accepted:2025-08-09 Online:2025-11-01 Published:2025-11-06

Abstract:

China is one of the four major centers of agricultural origin in the world, where two distinct agricultural systems were established: the rice-based system represented by the middle and lower reaches of the Yangtze River, and the dryland farming system represented by the Yellow River basin. Historical records and archaeological evidence indicate that as early as the Shang Dynasty, oracle bone inscriptions already mentioned crops such as millet (Setaria italica), broomcorn millet (Panicum miliaceum), wheat, rice, and soybeans. During the pre-Qin period, the concept of the ‘Five Grains’ was established, and in The Book of Songs (Shijing), the broader term ‘Hundred Grains’ also appeared as a general reference to food crops. However, it is noteworthy that buckwheat, a crop native to China, has long been absent from these documented grain systems. This omission is inconsistent with the fact that buckwheat is an indigenous Chinese crop with high genetic diversity, significant local variation, and a long history of cultivation and domestication in cold mountainous regions. This study conducts a systematic review of the literature related to the origin, evolution, and spread of buckwheat, integrating recent findings in archaeobotany and genetic diversity analysis. Following internationally accepted principles for identifying crop origin centers, and drawing on historical texts, biological characteristics, and distribution patterns, the study presents comprehensive evidence supporting the hypothesis that southwestern China-particularly Yunnan, Sichuan, Guizhou, and the southern fringe of the Qinghai-Tibet Plateau-is the center of origin, genetic diversity, and domestication for Fagopyrum species. There are 23 species of Fagopyrum identified in China, including three cultivated species-common buckwheat (F. esculentum), tartary buckwheat (F. tataricum), and golden buckwheat (F. cymosum)-and 20 wild species, the majority of which are concentrated in southwestern China. This region is not only the native habitat of the ancestral subspecies of common and tartary buckwheat (F. esculentum ssp. ancestrale and F. tataricum ssp. potanini), but also the area with the richest diversity of Fagopyrum, strongly indicating its status as the origin center. Furthermore, molecular markers and phylogenetic studies confirm close genetic relationships between wild and cultivated buckwheat species in this region, providing key evidence for reconstructing domestication pathways. With advancements in modern research, buckwheat has gained recognition not only for its short growth cycle, broad adaptability, and resilience to poor soils and cold climates, making it suitable for cultivation in remote and mountainous areas, but also for its grain's rich content of proteins, flavonoids, and functional sugar alcohols. As a highly promising functional coarse grain crop, buckwheat is particularly suited to the development of characteristic agriculture in central and western China. It holds significant potential for ecological sustainability, nutritional health, and high-value agricultural development, and is expected to play an important role in China’s national nutrition strategy and food diversity conservation. This study provides theoretical and empirical evidence to support the scientific designation of China as the center of origin and domestication of buckwheat, laying a solid foundation for future work in germplasm conservation, variety improvement, and industrial development.

Key words: buckwheat, origin, center of genetic diversity, crop domestication, archaeobotanical evidence, dissemination

Table 1

List of Fagopyrum species in China"

序号
Number
中文名称
Chinese name
种名
Species name
亚种
Subspecies
变种
Variety
1 西藏野荞麦 F. tibeticum (A.J.Li) Adr. Sanchez & Jan. Burke
2 硬枝野荞麦 F. urophyllum (Bur. et Fr.) H. gross
3 金荞麦 F. cymosum Meisn
4 抽葶野荞麦(长柄野荞麦) F. statice (Lévl.) H. Gross
5 海螺沟野荞麦 F. hailuogouense J. R. Shao, M. L. Zhou & Q. Zhang
6 齐蕊野荞麦 F. homotropicum Ohnishi
7 苦荞麦(鞑靼荞麦) F. tartaricum Gaertn 苦荞野生近缘种
F. tataricum ssp.potanini Batalin
8 皱叶野荞麦 F. crispatofolium J. L. Liu
9 普格野荞麦 F. pugense T. Yu
10 灌野荞麦 F. rubifolium Ohsaka et Ohnishi
11 细柄野荞麦 F. gracilipes (Hemsl.) Dammer. Ex Diels
12 螺髻山野荞麦 F. luojishanense J. R. Shao
13 长花柱野荞麦 F. longistylum M. Zhou & Y. Tang
14 甜荞麦(普通荞麦) F. esculentum Moench 甜荞野生近缘种
F. esculentum ssp. ancestrale Ohnishi
15 卵叶野荞麦 F. capillatum Ohnishi
16 疏穗野荞麦(尾叶野荞麦) F. caudatum (Sam.) A. J. Li, comb. nov 大花疏穗野荞麦
Fagopyrum caudatum var. grandiflorum M. Zhou & Y.Tang
17 心叶野荞麦(岩野荞麦) F. gilesii (Hemsl.) Hedberg
18 线叶野荞麦 F. lineare (Sam.) Haraldson
19 金沙野荞麦 F. jinshaense Ohsako et Ohnish
20 小野荞麦 F. leptopodum (Diels) Hedberg 疏穗小野荞麦
F. leptopodum (Diels) Hedberg var. grossii Lauener et Ferguson
21 羌彩野荞麦 F. qiangcai D. Q. Bai
22 纤梗野荞麦 F. gracilipedoides Ohsako et Ohnishi
23 理县野荞麦 F. macrocarpum Ohsaka et Ohnishi

Table 2

The discovery, dating and reference of buckwheat in China"

地点
Site
遗址
Ruin
文化期
Culture
分析样本
Sample
样品碳同位
素年代鉴定
C14 dating
结果描述
Result
参考文献
Reference
陕西扶风Fufeng, Shaanxi 新店剖面
Xindian Profile
全新世
Holocene
孢粉
Pollen

None
孢粉学研究发现荞麦花粉
Pollen analysis revealed Fagopyrum pollen
[44]
甘肃天水
Tianshui, Gansu
西山坪遗址
Xishanping Site
全新世
Holocene
孢粉
Pollen

None
孢粉学研究发现荞麦花粉
Pollen analysis revealed Fagopyrum pollen
[45]
甘肃临潭陈旗
Chenqi, Lintan, Gansu
磨沟遗址
Mogou Site
齐家文化
Qijia culture, 4000 a BP
墓葬牙结石
Dental calculus from 2 individuals in tomb

None
从牙结石中分离出荞麦淀粉
Fagopyrum starch grains were isolated from dental calculus
[46]
云南澄江Chengjiang, Yunnan 学山遗址
Xueshan Site
石寨文化
Shizhai culture, Neolithic-Bronze Age
普通荞麦籽粒
Common buckwheat grains

None
浮选出149粒荞麦籽粒;22粒籽粒特性测定结果为:长2.89 mm,宽2.43 mm
149 grains were recovered by flotation; 22 measured grains averaged 2.89 mm in length and 2.43 mm in width
[48]
云南剑川Jianchuan, Yunnan 海门口遗址
Haimenkou Site
青铜器时代
Bronze Age
籽粒
Grains

None
发现7粒荞麦籽粒
Seven buckwheat grains were identified
[49]
内蒙古赤峰Chifeng, Inner Mongolia 巴彦塔拉遗址
Bayantala Site
辽代Liao Dynasty, 916-1123 AD 籽粒
Grains

None
发现4粒荞麦籽粒,平均长3.7 mm,宽3.2 mm,厚1.0 mm
Four grains identified, average: length 3.7 mm, width 3.2 mm, thickness 1.0 mm
[51]
吉林白城Baicheng, Jilin 孙长青遗址
Sunchangqing Site
辽金时期Liao-Jin Period, Liao: 916-1123 AD;
Jin: 1115-1234 AD
籽粒
Grains

None
发现4粒完整荞麦籽粒;平均长3.68 mm,宽3.2 mm,厚0.90 mm;为吉林地区首次发现
Four complete grains identified; average size: 3.68 mm×3.2 mm×0.90 mm. First discovery in Jilin
[50]
喜马拉雅地区Himalayan Region Mebrak/
Phuszeling
普通与苦荞籽粒
Common and tartary buckwheat grains

Yes
发现25粒荞麦籽粒,包括F. esculentumF. tataricum;碳同位素测年为距今3000-2400年
25 grains identified, including F. esculentum and F. tataricum; 14C dating: 3000-2400 cal BP
[54]
云南迪庆Diqing, Yunnan 籽粒
Grains

Yes
粒数不详;碳同位素测年结果为距今3000-2700年
Number of grains unspecified; 14C dating: 3000-2700 cal BP
[55]
甘肃民乐
Minle, Gansu
四坝滩遗址
Sibatan Site
新石器晚期-青铜器时代早期
Late Neolithic-early Bronze Age
籽粒
Grains

Yes
发现6粒甜荞麦籽粒(F. esculentum);3粒完整籽粒经14C测年为3610-3458 cal BP
Six grains identified; 3 dated to 3610-3458 cal BP by 14C analysis
[52-53]
[1]
赵志军. 中国农业起源概述. 遗产与保护研究, 2019, 4(1): 1-7.
ZHAO Z J. Introduction of the origin of agriculture in China. Research on Heritages and Preservation, 2019, 4(1): 1-7. (in Chinese)
[2]
张居中, 陈昌富, 杨玉璋. 中国农业起源与早期发展的思考. 中国国家博物馆馆刊, 2014(1): 6-16.
ZHANG J Z, CHEN C F, YANG Y Z. Origins and early development of agriculture in China. Journal of National Museum of China, 2014(1): 6-16. (in Chinese)
[3]
刘红涛. 殷墟甲骨文承载的文化基因. 郑州: 河南日报, 2024: 004[2025-08-09]. https://newpaper.dahe.cn/hnrb/resfile/2024-06-10/04/hnrb2024061004.pdf.
LIU H T. The cultural genes carried by the Yin Ruins oracle bones. Zhengzhou: Henan Daily, 2024: 004[2025-08-09]. https://newpaper.dahe.cn/hnrb/resfile/2024-06-10/04/hnrb2024061004.pdf. in Chinese)
[4]
李娟. 诗经. 北京: 光明日报出版社, 2014.
LI J. The Book of Songs. Beijing: Guangming Daily Press, 2014. (in Chinese)
[5]
历史官职——疾医. 国学迷, https://www.guoxuemi.com/guanzhi/17437tg/. [2025-08-09].
Historical official position-sick doctor. Guoxuemi, https://www.guoxuemi.com/guanzhi/17437tg/. [2025-08-09]. in Chinese)
[6]
孟轲. 孟子译注. 北京: 中华书局, 1960.
MENG K. The Mencius, Annotated Translation. Beijing: Zhonghua Book Company, 1960. (in Chinese)
[7]
张双棣, 张万彬, 殷国光, 陈涛. 吕氏春秋. 北京: 中华书局, 2007.
ZHANG S D, ZHANG W B, YIN G G, CHEN T. Master Lü’s Spring and Autumn Annals. Beijing: Zhonghua Book Company Press, 2007. (in Chinese)
[8]
林汝法. 中国小杂粮. 北京: 中国农业科学技术出版社, 2002.
LIN R F. Minor Grain Crops in China. Beijing: China Agricultural Science and Technology Press, 2002. (in Chinese)
[9]
林汝法. 中国荞麦. 北京: 中国农业出版社, 1994.
LIN R F. China Buckwheat. Beijing: China Agriculture Press, 1994. (in Chinese)
[10]
林汝法. 苦荞举要. 北京: 中国农业科学技术出版社, 2013.
LIN R F. Tartary Buckwheat. Beijing: China Agricultural Science and Technology Press, 2013. (in Chinese)
[11]
瓦维洛夫. 主要栽培植物的世界起源中心. 董玉琛, 译. 北京: 农业出版社, 1982.
VAVILOV N I. The Centers of Origin of Cultivated Plants. Translated by DONGY C. Beijing: Agriculture Press, 1982. (in Chinese)
[12]
黄其煦. 黄河流域新石器时代农耕文化中的作物: 关于农业起源问题的探索. 农业考古, 1982(2): 55-61.
HUANG Q X. Crops in neolithic farming culture in the Yellow River Basin: Exploration on the origin of agriculture. Agricultural Archaeology, 1982(2): 55-61. (in Chinese)
[13]
唐宇, 邵继荣, 周美亮. 中国荞麦属植物分类学的修订. 植物遗传资源学报, 2019, 20(3): 646-653.

doi: 10.13430/j.cnki.jpgr.20181210001
TANG Y, SHAO J R, ZHOU M L. A taxonomic revision of Fagopyrum Mill from China. Journal of Plant Genetic Resources, 2019, 20(3): 646-653. (in Chinese)
[14]
MIN D Z, SHI W, DEHSHIRI M M, GOU Y T, LI W, ZHANG K X, ZHOU M L, LI B. The molecular phylogenetic position of Harpagocarpus (Polygonaceae) sheds new light on the infrageneric classification of Fagopyrum. PhytoKeys, 2023, 220: 109-126.
[15]
OHNISHI O, MATSUOKA Y. Search for the wild ancestor of buckwheat: II. Taxonomy of Fagopyrum (Polygonaceae) species based on morphology, isozymes and cpDNA variability. Genes & Genetic Systems, 1996, 71(6): 383-390.
[16]
YE N G, GUO G Q. Classification, origin and evolution of genus Fagopyrum in China. Proceedings of the 5th International Symposium on Buckwhaet, 1992.
[17]
陈庆富. 荞麦属植物科学. 北京: 科学出版社, 2012.
CHEN Q F. Plant Sciences on Genus Fagopyrum. Beijing: Science Press, 2012. (in Chinese)
[18]
李安仁. 中国植物志: 第25分册, 蓼科. 北京: 科学出版社, 1998.
LI A R. Flora of China: Volume 25, Polygonaceae. Beijing: Science Press, 1998. (in Chinese)
[19]
周美亮, 唐宇, 方沩. 中国荞麦属植物彩色图鉴. 北京: 科学出版社, 2021.
ZHOU M L, TANG Y, FANG W. Color Atlas of Fagopyrum in China. Beijing: Science Press, 2021. (in Chinese)
[20]
DE-CANDOLLE A. Origin of Cultivated Plants. England: Cambridge University Press, 1885.
[21]
丁颖. 谷类名实考. 农声, 1928: 99-115.
DING Y. Examination of Cereal Grain Nomenclature and Authenticity. Nong Sheng (Journal of Agricultural Voice), 1928: 99-115. (in Chinese)
[22]
胡先骕. 植物分类学简编. 北京: 高等教育出版社, 1955.
HU X S. Concise Manual of Plant Taxonomy. Beijing: Higher Education Press, 1955. (in Chinese)
[23]
CAMPBELL C G. Buckwheat//SIMMONDS N W(ed.) Evolution of Crop Plants. London: Longman Press, 1976: 235-237.
[24]
ZHOU M L, KREFT I, SUVOROVA G, TANG Y, WOO S H. Buckwheat Germplasm in the World. Amsterdam: Elsevier, 2018.
[25]
范昱, 丁梦琦, 张凯旋, 杨克理, 唐宇, 张宗文, 方沩, 严俊, 周美亮. 荞麦种质资源概况. 植物遗传资源学报, 2019, 20(4): 813-828.
FAN Y, DING M Q, ZHANG K X, YANG K L, TANG Y, ZHANG Z W, FANG W, YAN J, ZHOU M L. Germplasm resource of the genus Fagopyrum Mill. Journal of Plant Genetic Resources, 2019, 20(4): 813-828. (in Chinese)
[26]
范昱, 丁梦琦, 张凯旋, 唐宇, 方沩, 杨克理, 张宗文, 程剑平, 周美亮. 中国野生荞麦种质资源概况与利用进展. 植物遗传资源学报, 2020, 21(6): 1395-1406.

doi: 10.13430/j.cnki.jpgr.20200317002
FAN Y, DING M Q, ZHANG K X, TANG Y, FANG W, YANG K L, ZHANG Z W, CHENG J P, ZHOU M L. Overview and utilization of wild germplasm resources of the genus Fagopyrum Mill. in China. Journal of Plant Genetic Resources, 2020, 21(6): 1395-1406. (in Chinese)
[27]
OHNISHI O. The origin of cultivated buckwheat in Mankang district of the Sanjiang area of eastern Tibet and its diffusion to India and the Himalayan hills. Fagopyrum, 2024.
[28]
TSUJI K, OHNISHI O. Phylogenetic position of east Tibetan natural populations in Tartary buckwheat (Fagopyrum tataricum Gaertn.) reveased by RAPD analyses. Genetic Resources and Crop Evolution, 2001, 48: 63-67.
[29]
TSUJI K, OHNISHI O. Phylogenetic relationships among wild and cultivated Tartary buckwheat (Fagopyrum tataricum Gaert.) populations revealed by AFLP analyses. Genes & Genetic Systems, 2001, 76(1): 47-52.
[30]
夏明忠, 王安虎. 野生荞麦资源研究. 北京: 中国农业出版社, 2008.
XIA M Z, WANG A H. Study on Wild Buckwheat Resources. Beijing: China Agriculture Press, 2008. (in Chinese)
[31]
CHENG Y Z, ZHANG J, LIU Z Y, RAN B, DENG J, HUANG J, ZHU L W, SHI T X, LI H Y, CHEN Q F. Genetic diversity analysis and core germplasm collection construction of Tartary buckwheat based on SSR markers. Plants, 2025, 14(5): 771.
[32]
OHNISHI O. Discovery of wild ancestor of common buckwheat. Fagopyrum, 1991, 11: 5-10.
[33]
OHNISHI O. Search for wild ancestor of buchwheat: I Description of new Fagopyrum (Polygonaceae) species and their distribution in China and the Himalaya hills. Fagopyrum, 1998, 15: 18-28.
[34]
KONISHI T, YASUI Y, OHNISHI O. Original birthplace of cultivated common buckwheat inferred from genetic relationships among cultivated populations and natural populations of wild common buckwheat revealed by AFLP analysis. Genes & Genetic Systems, 2005, 80(2): 113-119.
[35]
ZHANG K X, HE Y Q, LU X, SHI Y L, ZHAO H, LI X B, LI J L, LIU Y, OUYANG Y N, TANG Y, et al. Comparative and population genomics of buckwheat species reveal key determinants of flavor and fertility. Molecular Plant, 2023, 16(9): 1427-1444.
[36]
FAWCETT J A, TAKESHIMA R, KIKUCHI S, YAZAKI E, KATSUBE-TANAKA T, DONG Y M, LI M F, HUNT H V, JONES M K, LISTER D L, et al. Genome sequencing reveals the genetic architecture of heterostyly and domestication history of common buckwheat. Nature Plants, 2023, 9(8): 1236-1251.

doi: 10.1038/s41477-023-01474-1 pmid: 37563460
[37]
赵佐成, 周明德, 王中仁, 侯鑫. 中国苦荞麦及其近缘种的遗传多样性研究. 遗传学报, 2002, 29(8): 723-734.
ZHAO Z C, ZHOU M D, WANG Z R, HOU X. Genetic diversity and differentiation of Fagopyrum tataricum and its related species in China. Acta Genetica Sinica, 2002, 29(8): 723-734. (in Chinese)
[38]
TSUJI K, OHNISHI O. Origin of cultivated Tatary buckwheat (Fagopyrum tataricum Gaertn.) revealed by RAPD analyses. Genetic Resources and Crop Evolution, 2000, 47(4): 431-438.
[39]
HE Y Q, ZHANG K X, SHI Y L, LIN H, HUANG X, LU X, WANG Z R, LI W, FENG X B, SHI T X, et al. Genomic insight into the origin, domestication, dispersal, diversification and human selection of Tartary buckwheat. Genome Biology, 2024, 25: 61.
[40]
OHNISHI O. Cultived buckwheat species and their relatives in Himalaya and Southen China//Proceeding of the 4th International Symposium on Buckwheat. Oral: USSR Press, 1989: 562-571.
[41]
CHEN Q F. A study of resources of Fagopyrum (Polygonaceae) native to China. Botanical Journal of the Linnean Society, 1999, 130(1): 53-64.
[42]
中国科学院考古研究所, 陕西省西安半坡博物馆. 西安半坡原始氏族公社聚落遗址. 北京: 文物出版社, 1963.
Institute of Archaeology, Chinese Academy of Sciences & Xi’ an Banpo Museum. The Prehistoric Clan Settlement Site at Banpo, Xi’an. Beijing: Cultural Relics Press, 1963. (in Chinese)
[43]
甘肃省文物考古研究所, 北京大学考古文博学院. 河西走廊史前考古调查报告. 北京: 文物出版社, 2011.
Gansu Institute of Cultural Relics and Archaeology, School of Archaeology and Museology of Peking University. Investigation Report on Prehistoric Archaeology in Hexi Corridor. Beijing: Cultural Relics Press, 2011. (in Chinese)
[44]
LI X Q, SHANG X, DODSON J, ZHOU X Y. Holocene agriculture in the Guanzhong Basin in NW China indicated by pollen and charcoal evidence. The Holocene, 2009, 19(8): 1213-1220.
[45]
李小强, 周新郢, 周杰, John Dodson, 张宏宾, 尚雪. 甘肃西山坪遗址生物指标记录的中国最早的农业多样化. 中国科学(D辑), 2007, 37(7): 934-940.
LI X Q, ZHOU X Y, ZHOU J, DODSON J, ZHANG H B, SHANG X. The earliest agricultural diversification in China recorded by biological indicators of Xishanping site in Gansu Province. Science in China (Series D), 2007, 37(7): 934-940. (in Chinese)
[46]
李明启, 杨晓燕, 王辉, 王强, 贾鑫, 葛全胜. 甘肃临潭陈旗磨沟遗址人牙结石中淀粉粒反映的古人类植物性食物. 中国科学(D辑), 2010, 40(4): 486-492.
LI M Q, YANG X Y, WANG H, WANG Q, JIA X, GE Q S. Ancient human plant food reflected by starch grains in human dental Calculus at Mogou site in Chenqi, Lintan, Gansu Province. Science in China (Series D), 2010, 40(4): 486-492. (in Chinese)
[47]
贾鑫. 青海省东北部地区新石器—青铜时代文化演化过程与植物遗存研究[D]. 兰州: 兰州大学, 2012.
JIA X. Study on the cultural evolution and plant remains in the neolithic-bronze age in the northeast of Qinghai Province[D]. Lanzhou: Lanzhou University, 2012. (in Chinese)
[48]
王祁. 云南澄江学山遗址植物大遗存分析[D]. 济南: 山东大学, 2014.
WANG Q. Analysis of plant remains in Xueshan site in Chengjiang, Yunnan Province[D]. Jinan: Shandong University, 2014. (in Chinese)
[49]
薛轶宁. 云南剑川海门口遗址植物遗存初步研究[D]. 北京: 北京大学, 2010.
XUE Y N. Preliminary study on plant remains of Haimenkou site in Jianchuan, Yunnan Province[D]. Beijing: Peking University, 2010. (in Chinese)
[50]
杨春, 徐坤, 赵志军. 吉林省白城市孙长青遗址浮选结果分析报告. 北方文物, 2010(4): 48-51.
YANG C, XU K, ZHAO Z J. Analysis report on flotation results of Sun Changqing site in Baicheng City, Jilin Province. Northern Cultural Relics, 2010(4): 48-51. (in Chinese)
[51]
孙永刚, 赵志军. 内蒙赤峰巴彦塔拉辽代遗址浮选结果及分析. 南方文物, 2014(3): 68-71.
SUN Y G, ZHAO Z J. The flotation results and analysis to the Liao dynasty Ruins in Bayan tala town, Chifeng City, Inner Mongolia. Cultural Relics in Southern China, 2014(3): 68-71. (in Chinese)
[52]
魏益民. 东灰山遗址荞麦子粒的发现及年代分析. 作物杂志, 2019(1): 85-89.
WEI Y M. Discovery and chronological analysis of buckwheat kernel in Donghuishan Ruins. Crops, 2019(1): 85-89. (in Chinese)
[53]
WEI Y M, GUO B L, REN M K. Properties of carbonized wheat kernels from the late Neolithic site of Donghuishan, Gansu Province, China. Cereal Chemistry, 2019, 96(4): 775-783.
[54]
KNÖRZER K H. 3000 years of agriculture in a valley of the High Himalayas. Vegetation History and Archaeobotany, 2000, 9(4): 219-222.
[55]
LI X. Food comes as the first: Staple crops in ancient Yunnan. 2016. Available at: https://mp.weixin.g9.com/s/DmWuz1-rsmAum7h5W44MRw.
[56]
SHARMA T, JANA S. Species relationships in Fagopyrum revealed by PCR-based DNA fingerprinting. Theoretical and Applied Genetics, 2002, 105(2): 306-312.
[57]
王安虎, 夏明忠, 蔡光泽, 杨坪. 栽培苦荞麦的起源及其近缘种亲缘分析. 西南农业学报, 2008, 21(2): 282-285.
WANG A H, XIA M Z, CAI G Z, YANG P. The origin of cultivating buckwheat and the genetic analysis of the kindred species. Southwest China Journal of Agricultural Sciences, 2008, 21(2): 282-285. (in Chinese)
[58]
STEWARD A N. The Polygoneae of Eastern Asia. Cambridge: The Gray Herbarium of Harvard University, 1930.
[59]
NAKAO S. Transmittance of cultivated plants through Sino-Himalayan route. Peoples of Nepal Himalaya, 1957.
[60]
KISHIMA Y, OGURA K, MIZUKAMI K, MIKAMI T, ADACHI T. Chloroplast DNA analysis in buckwheat species: Phylogenetic relationships, origin of the reproductive systems and extended inverted repeats. Plant Science, 1995, 108(2): 173-179.
[61]
HE M, HE Y, ZHANG K, LU X, ZHANG X, GAO B, FAN Y, ZHAO H, JHA R, HUDA M N, et al. Comparison of buckwheat genomes reveals the genetic basis of metabolomic divergence and ecotype differentiation. New Phytologist, 2022, 235(5): 1927-1943.

doi: 10.1111/nph.18306 pmid: 35701896
[62]
孟方平. 说荞麦. 农业考古, 1983(2): 91-93.
MENG F P. On Buckwheat. Agricultural Archaeology, 1983(2): 91-93. (in Chinese)
[63]
蒋俊芳, 贾星. 四川大凉地区是苦荞起源地之一. 荞麦动态, 1991(1): 2-3.
JIANG J F, JIA X. The Liangshan region of Sichuan is one of the origins of tartary buckwheat. Buckwheat Dynamics, 1991(1): 2-3. (in Chinese)
[64]
李毓芳. 陕西咸阳马泉西汉墓. 考古, 1979(2): 125-135, 202.
LI Y F. Western Han tomb in Ma Quan, Xianyang, Shaanxi Province. Archaeology, 1979(2): 125-135, 202. (in Chinese)
[65]
韩茂莉. 中国历史农业地理. 北京: 北京大学出版社, 2012.
HAN M L. Historical Agricultural Geography of China. Beijing: Peking University Press, 2012. (in Chinese)
[66]
李钦元, 杨曼霞. 荞麦起源于云南初探. 荞麦动态, 1992(1): 6-10.
LI Q Y, YANG M X. Preliminary study on the origin of buckwheat in Yunnan. Buckwheat Dynamics, 1992(1): 6-10. (in Chinese)
[67]
CAMPBELL C G. Buckwheat Fagopyrum esculentum Moench. Promoting the conservation and use of underutilized and neglected crops. IPK and IPGRI, Italy, Rome, 1997.
[68]
魏益民. 荞麦品质与加工. 西安: 世界图书出版社, 1995.
WEI Y M. Quality and Processing of Buckwheat Grain. Xian: World Press, 1995. (in Chinese)
[69]
LI Q Y. Preliminary Investigation on Buckwheat Origin in Yunnan, China//Proceeding of the 5th Inernational Symposium on Buckwheat. 1992: 44-48.
[1] LUO Qin, MAO FangHua, CHEN XieYong, CHEN Jing, HUANG Biao, YE NaiXing, ZHENG DeYong, WEI Hang, YAO QingHua. Analysis of Aroma Characteristics and Origin Discrimination of White Peony Tea in Different Origins [J]. Scientia Agricultura Sinica, 2024, 57(23): 4774-4793.
[2] ZHOU XiaoQian, LI XiaoBei, ZHANG YanMei, ZHOU ChangYan, REN JiaLi, ZHAO XiaoYan. Effects of Origin on the Volatile Flavor Components of Morels Based on GC-IMS and GC×GC-ToF-MS [J]. Scientia Agricultura Sinica, 2024, 57(22): 4553-4567.
[3] LEI XinHui, WU YiXin, WANG JiaLe, TAO JinCai, WAN ChenXi, WANG Meng, GAO XiaoLi, FENG BaiLi, GAO JinFeng. Effects of Planting Density and Fertilization Level on Photosynthesis, Yield and Lodging Resistance of Common Buckwheat [J]. Scientia Agricultura Sinica, 2024, 57(2): 264-277.
[4] LIU Tong, WANG ZhiRong, LI Wei, LIU Yang, WANG XiangRu, LAI DiLi, HE YuQi, ZHANG KaiXuan, ZHAO ZhenJun, ZHOU MeiLiang. Function Analysis of bHLH93 Transcription Factor in Tartary Buckwheat in Response to Aluminum Stress [J]. Scientia Agricultura Sinica, 2024, 57(16): 3127-3141.
[5] YAO YiJun, JU XingRong, WANG LiFeng. Lipid-Lowering Effects and Its Regulation Mechanism of Buckwheat Polyphenols in High-Fat Diet-Induced Obese Mice [J]. Scientia Agricultura Sinica, 2023, 56(5): 981-994.
[6] PENG Pai, WANG XiaoLong, MA Lan, ZOU XiaoYang, MA QianYing, ZHANG XinYu, LI XiaoPing, HU XinZhong. Effects of Oat Bran Flour and Tartary Buckwheat Bran Flour on Structure, Cooking Quality and Digestive Characteristics of Wheat Noodles [J]. Scientia Agricultura Sinica, 2023, 56(20): 4102-4114.
[7] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[8] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[9] XingXiang GAO,Jian LI,Shuai ZHANG,YueLi ZHANG,Feng FANG,Mei LI,LianYang BAI,ShuangYing ZHANG. Spread and Resistance Level of Aegilops tauschii to Mesosulfuron- Methyl in Winter Wheat Field of Shandong Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 969-979.
[10] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[11] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[12] ZHENG FengSheng,WANG HaiHua,WU QingTao,SHEN Quan,TIAN JianHong,PENG XiXu,TANG XinKe. Genome-Wide Identification of VQ Gene Family in Fagopyrum tataricum and Its Expression Profiles in Response to Leaf Spot Pathogens [J]. Scientia Agricultura Sinica, 2021, 54(19): 4048-4060.
[13] HOU SiYu,WANG XinFang,DU Wei,FENG JinHua,HAN YuanHuai,LI HongYing,LIU LongLong,SUN ZhaoXia. Genome-Wide Identification of WOX Family and Expression Analysis of Callus Induction Rate in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2021, 54(17): 3573-3586.
[14] ZHANG QingAn,CHEN BoYu. Research Progress of Four Sulfur Compounds Related to Red Wine Flavor [J]. Scientia Agricultura Sinica, 2020, 53(5): 1029-1045.
[15] HAO YanRong,DU Wei,HOU SiYu,WANG DongHang,FENG HongMei,HAN YuanHuai,ZHOU MeiLiang,ZHANG KaiXuan,LIU LongLong,WANG JunZhen,LI HongYing,SUN ZhaoXia. Identification of ARF Gene Family and Expression Pattern Induced by Auxin in Fagopyrum tataricum [J]. Scientia Agricultura Sinica, 2020, 53(23): 4738-4749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!