Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (19): 3919-3931.doi: 10.3864/j.issn.0578-1752.2025.19.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of Nitrogen Application on Organic Nitrogen Mineralization Functional Genes in Rapeseed and Wheat Rhizosphere Soils Under Different Rotation Patterns

ZHAO Jian(), REN Tao, FANG YaTing, YANG Xin, SHENG QianNan, LI XiaoKun, ZHU Jun(), LU JianWei   

  1. College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070
  • Received:2024-10-21 Accepted:2025-02-28 Online:2025-10-01 Published:2025-10-10
  • Contact: ZHU Jun

Abstract:

【Objective】Soil nitrogen transformation was affected by microbial activities and modulated by crop types and fertilization practices. Understanding the effect of nitrogen application on the abundance of functional genes involved in organic nitrogen mineralization in the rhizosphere of winter crops under rice-oilseed and rice-wheat rotations, enhanced our understanding of the organic nitrogen mineralization process across different cropping systems and nitrogen fertilization regimes.【Method】A localized field experiment was conducted to collect rhizosphere soils from rapeseed and wheat in the seventh year of rice-rapeseed and rice-wheat rotation systems, under both nitrogen application and no nitrogen treatments. This analysis focused on differences in organic matter fractions and nitrogen availability. Furthermore, metagenomic sequencing was employed to analyze the abundance of functional genes mediating organic nitrogen mineralization in the rhizosphere soil.【Result】The results indicate that, compared to the no nitrogen treatment, nitrogen addition significantly increased the concentrations of potential mineralizable nitrogen (PMN), soil organic carbon (SOC), total nitrogen (TN), dissolved organic carbon/nitrogen (DOC, DON), particulate organic carbon/nitrogen (POC, PON), and mineral-associated organic carbon/nitrogen (MAOC, MAON) in rhizosphere soil. Under identical fertilization treatments, no significant differences were observed in the organic matter fractions and nitrogen availability between the rapeseed and wheat rhizosphere soils in the rice-oilseed and rice-wheat rotation systems. Compared to the no nitrogen treatment, nitrogen application reduced the abundance of functional genes encoding protease (K14645), chitinase (K01183), urease (K01429, K01430), and arginase (K01476), while increasing the abundance of functional genes encoding glutamate dehydrogenase (K00260). In the nitrogen application treatment, the abundance of functional genes encoding protease and arginase in rapeseed rhizosphere soil within the rice-oilseed rotation system was significantly higher than that in wheat rhizosphere soil within the rice-wheat rotation system. Microorganisms involved in organic nitrogen mineralization functional genes predominantly belonged to the phyla Proteobacteria, Acidobacteria, and Chloroflexi. Nitrogen addition significantly influenced the microbial community structure of protease-encoding functional genes in rhizosphere soil, whereas no significant differences were observed in the microbial community structure of organic nitrogen mineralization functional genes between rapeseed and wheat rhizosphere soils in the rice-oilseed and rice-wheat rotation systems. PMN and SOC in rhizosphere soil were identified as the primary drivers influencing the abundance of organic nitrogen mineralization functional genes and the structure of the microbial community. The abundance of functional genes encoding protease and arginase exhibited a significant negative correlation with PMN and SOC.【Conclusion】The results of this study demonstrate that both crop species and nitrogen application under different crop rotation systems can significantly influence the abundance of functional genes involved in organic nitrogen mineralization in rhizosphere soil, while also identifying the primary factors driving the abundance of these genes in rhizosphere soil.

Key words: nitrogen application, rice-rapeseed rotation, rice-wheat rotation, rhizosphere soil, organic matter components, mineralization functional genes, metagenomics

Table 1

Microbial functional genes of organic nitrogen mineralization"

功能分组 Functional groups KEGG (KO) 酶编号 Enzyme number KO名称KO name
蛋白酶基因
Protease genes
K01342 EC:3.4.21.62 aprE; subtilisin
K14645 EC:3.4.21.- K14645; serine protease
肽酶基因
Peptidase genes
K01255 EC:3.4.11.1 CARP, pepA; leucyl aminopeptidase
K01256 EC:3.4.11.2 pepN; aminopeptidase N
几丁质酶基因
Chitinase genes
K01183 EC:3.2.1.14 E3.2.1.14; chitinase
K01207 EC:3.2.1.52 nagZ; beta-N-acetylhexosaminidase
脲酶基因
Urease genes
K01428 EC:3.5.1.5 ureC; urease subunit alpha
K01429 EC:3.5.1.5 ureB; urease subunit beta
K01430 EC:3.5.1.5 ureA; urease subunit gamma
K14048 EC:3.5.1.5 ureAB; urease subunit gamma/beta
精氨酸酶基因 Arginase gene K01476 EC:3.5.3.1 E3.5.3.1, rocF, arg; arginase
谷氨酸脱氢酶基因
Glutamic
dehydrogenase genes
K00260 EC:1.4.1.2 gudB, rocG; glutamate dehydrogenase
K00261 EC:1.4.1.3 GLUD1_2, gdhA; glutamate dehydrogenase (NAD(P)+)
K00262 EC:1.4.1.4 E1.4.1.4, gdhA; glutamate dehydrogenase (NADP+)

Table 2

Effect of nitrogen application on rhizosphere physicochemical properties of rapeseed and wheat under rice-rapeseed and rice-wheat rotations"

处理
Treatment
油菜Rapeseed 小麦Wheat Two-way ANOVA (P value)
不施氮
-N
施氮
+N
不施氮
-N
施氮
+N
作物
Crop
氮肥
Nitrogen
作物×氮肥
Crop×Nitrogen
潜在矿化氮PMN (mg∙kg-1) 53.12±4.74b 73.07±8.01a 46.17±5.31b 78.70±5.12a 0.852 0.000 0.104
无机氮SIN (mg∙kg-1) 10.02±0.38b 10.61±0.88a 9.59±0.80b 10.97±0.50a 0.638 0.015 0.149
有机碳SOC (g∙kg-1) 13.35±0.56b 15.74±0.74a 13.04±0.77b 15.67±0.94a 0.676 0.000 0.807
全氮TN (g∙kg-1) 1.36±0.11b 1.57±0.07a 1.27±0.11b 1.51±0.13a 0.275 0.007 0.837
溶解性有机碳 DOM-C (mg∙kg-1) 60.95±6.93b 75.70±8.92a 59.57±4.31b 75.87±6.74a 0.884 0.005 0.851
溶解性有机氮 DOM-N (mg∙kg-1) 19.26±3.25c 25.07±1.62ab 21.25±2.96bc 26.71±2.63a 0.277 0.007 0.912
颗粒态有机碳POM-C (g∙kg-1) 3.95±0.38b 5.26±0.6a 4.13±0.43b 5.29±0.72a 0.746 0.005 0.816
颗粒态有机氮POM-N (g∙kg-1) 0.30±0.04b 0.37±0.05a 0.31±0.04b 0.36±0.06a 0.862 0.048 0.773
矿物结合态有机碳MAOM-C (g∙kg-1) 9.41±0.35b 10.48±0.54a 8.91±0.50b 10.38±0.64a 0.343 0.003 0.540
矿物结合态有机氮MAOM-N (g∙kg-1) 1.07±0.08b 1.20±0.03a 0.97±0.07b 1.15±0.07a 0.082 0.003 0.561

Table 3

Effect of nitrogen application on rhizosphere organic nitrogen mineralization functional genes abundance of rapeseed and wheat under rice-rapeseed and rice-wheat rotations (TPM)"

处理
Treatment
KO 油菜Rapeseed 小麦Wheat Two-way ANOVA (P value)
不施氮
-N
施氮
+N
不施氮
-N
施氮
+N
作物
Crop
氮肥
Nitrogen
作物×氮肥
Crop×Nitrogen
蛋白酶基因
Protease genes
K01342 21.17±2.72a 22.90±1.28a 22.00±0.36a 17.90±1.51b 0.066 0.261 0.017
K14645 61.90±3.53a 59.07±2.40a 61.70±1.71a 49.17±3.01b 0.013 0.001 0.016
肽酶基因
Peptidase genes
K01255 136.42±18.1a 122.67±5.52a 120.62±3.59a 115.59±14.29a 0.137 0.212 0.547
K01256 44.27±10.08a 37.10±1.57a 36.67±1.27a 34.30±3.96a 0.141 0.172 0.472
几丁质酶基因
Chitinase genes
K01183 38.70±5.74a 31.77±1.53b 34.33±0.95ab 32.43±0.65b 0.321 0.035 0.188
K01207 138.09±7.22a 127.23±4.22ab 127.41±5.13ab 117.93±12.59b 0.062 0.058 0.886
脲酶基因
Urease genes
K01428 28.17±2.02a 26.73±0.32a 28.93±0.59a 27.93±2.01a 0.278 0.188 0.804
K01429 25.40±2.16a 22.20±1.61b 23.77±1.10ab 22.43±0.95ab 0.451 0.033 0.322
K01430 32.57±4.51a 25.90±2.00b 31.17±2.50ab 29.53±1.44ab 0.517 0.036 0.166
K14048 14.53±1.19a 14.03±1.00a 14.73±0.60a 13.20±1.15a 0.604 0.121 0.404
精氨酸酶基因
Arginase gene
K01476 109.16±3.52a 99.42±3.60ab 104.10±4.20a 90.13±8.19b 0.045 0.004 0.505
谷氨酸脱氢酶基因
Glutamic dehydrogenase genes
K00260 22.30±5.00b 30.87±2.99a 24.87±2.42ab 26.13±3.43ab 0.615 0.045 0.116
K00261 111.93±16.51a 117.48±4.61a 116.57±4.13a 101.96±8.49a 0.364 0.446 0.112
K00262 18.07±2.97a 21.90±2.19a 18.57±0.98a 21.13±4.27a 0.938 0.089 0.712

Fig. 1

Effect of nitrogen application on the microbial communities involved in organic nitrogen mineralization functional genes in the rhizosphere soil of rapeseed and wheat under rice-rapeseed and rice-wheat rotations Figures A, B, C, D, E, and F represent the microbial community composition involved in encoding protease, peptidase, chitinase, urease, arginase, and glutamate dehydrogenase genes, respectively. -N: No-nitrogen; +N: Nitrogen addition. TPM: Transcripts per million"

Fig. 2

Principal coordinates analysis of microbial communities involved in organic nitrogen mineralization functional genes in the rhizosphere soil of rapeseed and wheat under rice-rapeseed and rice-wheat rotations Figures A, B, C, D, E, and F represent the microbial community composition involved in encoding protease, peptidase, chitinase, urease, arginase, and glutamate dehydrogenase genes, respectively"

Fig. 3

Redundancy analysis between the abundance of functional genes involved in encoding organic nitrogen mineralization enzymes and soil physicochemical properties -N: No-nitrogen; +N: Nitrogen addition; PMN: Potentially mineralizable nitrogen; SIN: Soil inorganic nitrogen; SOC: Soil organic carbon; TN: Total nitrogen; DOC: Dissolved organic carbon; DON: Dissolved organic nitrogen; POC: Particulate organic carbon; PON: Particulate organic nitrogen; MAOC: Mineral-associated organic carbon; MAON: Mineral-associated organic nitrogen. The same as below"

Fig. 4

Relative contribution of rhizosphere soil physicochemical properties to the abundance of functional genes encoding protease (K14645) and arginase (K01476)"

Fig. 5

Correlation analysis between the abundance of functional genes encoding protease (K14645) and arginase (K01476) in rhizosphere soil mineralization nitrogen and soil organic carbon"

[1]
朱兆良. 中国土壤氮素研究. 土壤学报, 2008, 45(5): 778-783.
ZHU Z L. Research on soil nitrogen in China. Acta Pedologica Sinica, 2008, 45(5): 778-783. (in Chinese)
[2]
SCHULTEN H R, SCHNITZER M. The chemistry of soil organic nitrogen: A review. Biology and Fertility of Soils, 1997, 26(1): 1-15.
[3]
CRAINE J M, MORROW C, FIERER N. Microbial nitrogen limitation increases decomposition. Ecology, 2007, 88(8): 2105-2113.

pmid: 17824441
[4]
FUJII K, YAMADA T, HAYAKAWA C, NAKANISHI A, FUNAKAWA S. Another bottleneck for nitrogen mineralization in temperate forest soils: Arginine metabolism in microorganisms. Soil Biology and Biochemistry, 2018, 126: 22-30.
[5]
ZHANG J Y, YU Z H, LI Y S, WANG G H, LIU X B, TANG C X, ADAMS J, LIU J J, LIU J D, ZHANG S Q, WU J J, JIN J. Co-elevation of CO2 and temperature enhances nitrogen mineralization in the rhizosphere of rice. Biology and Fertility of Soils, 2024, 60(6): 729-741.
[6]
林开淼, 元晓春, 曾泉鑫, 徐建国, 陈文伟, 陈岳民. 氮添加对戴云山黄山松林土壤有机氮解聚酶活性的影响及其调控因素. 生态学报, 2023, 43(16): 6550-6559.
LIN K M, YUAN X C, ZENG Q X, XU J G, CHEN W W, CHEN Y M. Effects of nitrogen addition and associated regulatory factors of the organic nitrogen depolymerizing enzyme activity of Pinus taiwanensis forest soils in Daiyun Mountain. Acta Ecologica Sinica, 2023, 43(16): 6550-6559. (in Chinese)
[7]
JI C, ROBERT S. Linking microbial functional gene abundance and soil extracellular enzyme activity: Implications for soil carbon dynamics. Global Change Biology, 2021, 27(7): 1322-1325.

doi: 10.1111/gcb.15506 pmid: 33372345
[8]
CHEN T, CHENG R M, XIAO W F, SHEN Y F, WANG L J, SUN P F, ZHANG M, LI J. Nitrogen addition enhances soil nitrogen mineralization through an increase in mineralizable organic nitrogen and the abundance of functional genes. Journal of Soil Science and Plant Nutrition, 2024, 24(1): 975-987.
[9]
焦亚鹏, 齐鹏, 王晓娇, 武均, 姚一铭, 蔡立群, 张仁陟. 施氮量对农田土壤有机氮组分及酶活性的影响. 中国农业科学, 2020, 53(12): 2423-2434. doi: 10.3864/j.issn.0578-1752.2020.12.010.
JIAO Y P, QI P, WANG X J, WU J, YAO Y M, CAI L Q, ZHANG R Z. Effects of different nitrogen application rates on soil organic nitrogen components and enzyme activities in farmland. Scientia Agricultura Sinica, 2020, 53(12): 2423-2434. doi: 10.3864/j.issn.0578-1752.2020.12.010. (in Chinese)
[10]
CHEN Y, XIA A Q, ZHANG Z J, WANG F, CHEN J H, HAO Y B, CUI X Y. Extracellular enzyme activities response to nitrogen addition in the rhizosphere and bulk soil: A global meta-analysis. Agriculture, Ecosystems & Environment, 2023, 356: 108630.
[11]
JILLING A, KEILUWEIT M, CONTOSTA A R, FREY S, SCHIMEL J, SCHNECKER J, SMITH R G, TIEMANN L, GRANDY A S. Minerals in the rhizosphere: Overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry, 2018, 139(2): 103-122.
[12]
荀卫兵, 王伯仁, 冉炜, 沈其荣, 徐明岗, 张瑞福. 不同施肥制度对南方旱地红壤微生物组结构和功能影响研究进展. 农业资源与环境学报, 2021, 38(4): 537-544, 532.
XUN W B, WANG B R, RAN W, SHEN Q R, XU M G, ZHANG R F. Research progress on the effect of different fertilizations on microbiome structure and function in upland red soil in Southern China. Journal of Agricultural Resources and Environment, 2021, 38(4): 537-544, 532. (in Chinese)
[13]
DONG H Y, FAN S X, SUN H Y, CHEN C L, WANG A X, JIANG L L, MA D R. Rhizosphere-associated microbiomes of rice (Oryza sativa L.) under the effect of increased nitrogen fertilization. Frontiers in Microbiology, 2021, 12: 730506.
[14]
艾超, 孙静文, 王秀斌, 梁国庆, 何萍, 周卫. 植物根际沉积与土壤微生物关系研究进展. 植物营养与肥料学报, 2015, 21(5): 1343-1351.
AI C, SUN J W, WANG X B, LIANG G Q, HE P, ZHOU W. Advances in the study of the relationship between plant rhizodeposition and soil microorganism. Journal of Plant Nutrition and Fertilizer, 2015, 21(5): 1343-1351. (in Chinese)
[15]
WANG Y Z, ZHANG H F, ZHANG Y P, FEI J C, RONG X M, PENG J W, LUO G W. Crop rotation-driven changes in rhizosphere metabolite profiles regulate soil microbial diversity and functional capacity. Agriculture, Ecosystems & Environment, 2023, 358: 108716.
[16]
WANG Y L, ALMVIK M, CLARKE N, EICH-GREATOREX S, ØGAARD A F, KROGSTAD T, LAMBERS H, CLARKE J L. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits. AoB Plants, 2015, 7: plv097.
[17]
SHI S J, RICHARDSON A E, O’CALLAGHAN M, DEANGELIS K M, JONES E E, STEWART A, FIRESTONE M K, CONDRON L M. Effects of selected root exudate components on soil bacterial communities. FEMS Microbiology Ecology, 2011, 77(3): 600-610.

doi: 10.1111/j.1574-6941.2011.01150.x pmid: 21658090
[18]
KIRKEGAARD J A, MELE P M, HOWE G N. Enhanced accumulation of mineral-N following canola. Australian Journal of Experimental Agriculture, 1999, 39(5): 587.
[19]
RYAN M H, KIRKEGAARD J A, ANGUS J F. Brassica crops stimulate soil mineral N accumulation. Soil Research, 2006, 44(4): 367.
[20]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 2000.
LU R K. Methods of Soil Agrochemical Analysis. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[21]
WARING S A, BREMNER J M. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature, 1964, 201(4922): 951-952.
[22]
RUI Y C, JACKSON R D, COTRUFO M F, SANFORD G R, SPIESMAN B J, DEISS L, CULMAN S W, LIANG C, RUARK M D. Persistent soil carbon enhanced in Mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. PNAS, 2022, 119(7): e2118931119.
[23]
MARTINS M R, ANGERS D A, CORÁ J E. Co-accumulation of microbial residues and particulate organic matter in the surface layer of a no-till Oxisol under different crops. Soil Biology and Biochemistry, 2012, 50: 208-213.
[24]
LI D H, LIU C M, LUO R B, SADAKANE K, LAM T W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 2015, 31(10): 1674-1676.
[25]
FU L M, NIU B F, ZHU Z W, WU S T, LI W Z. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, 28(23): 3150-3152.

doi: 10.1093/bioinformatics/bts565 pmid: 23060610
[26]
BUCHFINK B, XIE C, HUSON D H. Fast and sensitive protein alignment using DIAMOND. Nature Methods, 2015, 12(1): 59-60.

doi: 10.1038/nmeth.3176 pmid: 25402007
[27]
NAKAYAMA M, IMAMURA S, TATSUMI C, TANIGUCHI T, TATENO R. Microbial functions and soil nitrogen mineralisation processes in the soil of a cool temperate forest in northern Japan. Biogeochemistry, 2021, 155(3): 359-379.
[28]
OUYANG Y, REEVE J R, NORTON J M. Soil enzyme activities and abundance of microbial functional genes involved in nitrogen transformations in an organic farming system. Biology and Fertility of Soils, 2018, 54(4): 437-450.
[29]
XIE Z H, YU Z H, LI Y S, WANG G H, LIU X B, TANG C X, LIAN T X, ADAMS J, LIU J J, LIU J D, HERBERT S J, JIN J. Soil microbial metabolism on carbon and nitrogen transformation links the crop-residue contribution to soil organic carbon. NPJ Biofilms and Microbiomes, 2022, 8(1): 14.

doi: 10.1038/s41522-022-00277-0 pmid: 35365687
[30]
XU H D, ZHU B, WEI X M, YU M K, CHENG X R. Root functional traits mediate rhizosphere soil carbon stability in a subtropical forest. Soil Biology and Biochemistry, 2021, 162: 108431.
[31]
ZHANG L, LIU J, XI J Z, PANG R, GUNINA A, ZHOU S R. Competition for nitrogen between plants and microorganisms in grasslands: Effect of nitrogen application rate and plant acquisition strategy. Biology and Fertility of Soils, 2024, 60(2): 227-236.
[32]
王慧颖, 徐明岗, 周宝库, 马想, 段英华. 黑土细菌及真菌群落对长期施肥响应的差异及其驱动因素. 中国农业科学, 2018, 51(5): 914-925. doi: 10.3864/j.issn.0578-1752.2018.05.010.
WANG H Y, XU M G, ZHOU B K, MA X, DUAN Y H. Response and driving factors of bacterial and fungal community to long-term fertilization in black soil. Scientia Agricultura Sinica, 2018, 51(5): 914-925. doi: 10.3864/j.issn.0578-1752.2018.05.010. (in Chinese)
[33]
LIU J A, PENG Z H, TU H R, QIU Y, LIU Y, LI X M, GAO H, PAN H B, CHEN B B, LIANG C L, CHEN S, QI J J, WANG Y H, WEI G H, JIAO S. Oligotrophic microbes are recruited to resist multiple global change factors in agricultural subsoils. Environment International, 2024, 183: 108429.
[34]
RAMIREZ K S, CRAINE J M, FIERER N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology, 2012, 18(6): 1918-1927.
[35]
JIANG Z H, LIU Y Z, YANG J P, ZHOU Z Q, GUNINA A. Effects of nitrogen fertilization on the rhizosphere priming. Plant and Soil, 2021, 462(1): 489-503.
[36]
O'SULLIVAN C A, DUNCAN E G, ROPER M M, RICHARDSON A E, KIPKEGAARD J A, PEPOPLES M B. Root exudates from canola exhibit biological nitrification inhibition and are effective in inhibiting ammonia oxidation in soil. Frontiers of Agricultural Science and Engineering, 2021, 9 (2): 177-186.
[37]
BROWN P D, MORRA M J, MCCAFFREY J P, AULD D L, WILLIAMS L. Allelochemicals produced during glucosinolate degradation in soil. Journal of Chemical Ecology, 1991, 17(10): 2021-2034.

doi: 10.1007/BF00992585 pmid: 24258495
[38]
杜思垚, 方娅婷, 鲁剑巍. 根系分泌物对作物养分吸收利用的影响研究进展. 华中农业大学学报, 2023, 42(2): 147-157.
DU S Y, FANG Y T, LU J W. Progress on effects of root exudates on nutrient uptake and utilization of crops. Journal of Huazhong Agricultural University, 2023, 42(2): 147-157. (in Chinese)
[1] ZHAO TongTong, GU XiaoBo, TAN ChuanDong, YAN TingLin, LI XiaoYan, CHANG Tian, DU YaDan. Effects of Water-Nitrogen Coupling on the Mineralization of Organic Carbon and Nitrogen for Mulched Farmland Soils in the Arid Regions of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(5): 929-942.
[2] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[3] LEI BiXin, YU YongBo, ZHANG MingTong, CUI GuoJi, HONG JiaWen, HU Tao, YOU AiXin, ZHANG WenJing, MA ShangYu, HUANG ZhengLai, FAN YongHui. Impact of Post-Anthesis Heat Stress on Nitrogen Use Efficiency and Yield Components in Wheat [J]. Scientia Agricultura Sinica, 2025, 58(19): 3837-3856.
[4] FANG YaTing, ZHAO Jian, SHENG QianNan, LI KaiXu, WANG XiangHua, ZHANG YangYang, ZHU Jun, CONG RiHuan, LU ZhiFeng, LI XiaoKun, REN Tao, LU JianWei. Effects of Long-Term Chemical Fertilizer and Organic Material Application on Crop Yield and Nutrient Utilization in Rice-Rapeseed Rotation System [J]. Scientia Agricultura Sinica, 2025, 58(16): 3164-3177.
[5] BU RongYan, CHENG WenLong, WU Ji, TANG Shan, LI Min, LU JianWei, JI GenXue, WANG Hui, ZHU Rui, JIANG FaHui, TANG MengMeng, HAN Shang. Organic-Inorganic Fertilization Application and Deep Tillage Enhance Productivity and Nutrient Use Efficiency in Rice-Rapeseed Rotations [J]. Scientia Agricultura Sinica, 2025, 58(16): 3178-3189.
[6] MENG ZiZhen, REN Tao, LIU Chen, WANG KunKun, LIAO ShiPeng, LI XiaoKun, CONG RiHuan, LU ZhiFeng, FANG YaTing, LU JianWei. Balanced Application of Nitrogen, Phosphorus and Potassium Fertilizer in Rice-Rapeseed Rotation System Improves Crop Yield and Nutrient Utilization [J]. Scientia Agricultura Sinica, 2025, 58(16): 3190-3200.
[7] DONG YunQi, HUANG Jian, CHAI YiXiao, YANG ShiChao, WANG Min, MENG XuSheng, GUO ShiWei. Changes in Annual Yield and Soil Fertility of Rice-Rapeseed Rotation Under Different Fertilization Modes [J]. Scientia Agricultura Sinica, 2025, 58(16): 3201-3219.
[8] FANG Wen, LIU JunQuan, CUI Xin, LIU AiHua, FANG YaTing, CONG RiHuan, LU ZhiFeng, LI XiaoKun, REN Tao, LU JianWei. Characteristics of Crop Yield, Stability and Nitrogen Utilization in Rice-Rapeseed Rotation System Under Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2025, 58(16): 3220-3232.
[9] LIU Chen, FANG YaTing, REN Tao, WANG KunKun, REN YuFang, MENG ZiZhen, LIAO ShiPeng, LU JianWei. The Impact of Annual Nitrogen Fertilizer Management on Crop Yield and Nitrogen Utilization in Rice-Rapeseed Rotation System [J]. Scientia Agricultura Sinica, 2025, 58(16): 3233-3244.
[10] GAO ZiYi, WU HaiYa, LIU JunQuan, CUI Xin, LIU AiHua, FANG YaTing, REN Tao, LI XiaoKun, LU JianWei. Characteristics of Potassium Utilization and Crop Yield Formation in Rice-Rapeseed Rotation System Under Different Potassium Fertilizer Application Rates [J]. Scientia Agricultura Sinica, 2025, 58(16): 3245-3255.
[11] YE XiaoLei, TIAN GuiSheng, LIU JunQuan, GENG GuoTao, FANG YaTing, REN Tao, LI XiaoKun, CONG RiHuan, LU ZhiFeng, LU JianWei. Magnesium Fertilization Effects and Application Recommendations in the Rice-Rapeseed Rotation System [J]. Scientia Agricultura Sinica, 2025, 58(16): 3256-3266.
[12] HUO RunXia, FANG YaTing, ZHANG YanKe, WU HaiYa, LIU GuiSheng, LI XiaoKun, REN Tao, LU ZhiFeng, CONG RiHuan, LU JianWei. Effects of Fertilizer Reduction on Crop Yield and Soil Fertility Under Long-Term Straw-Return Conditions in Rice-Rice-Rapeseed Rotations [J]. Scientia Agricultura Sinica, 2025, 58(16): 3267-3279.
[13] WANG AnXin, FANG YaTing, DUN Qian, WU YongQing, LIAO ShiPeng, LI XiaoKun, REN Tao, LU ZhiFeng, CONG RiHuan, LU JianWei. Effects of Direct and Biochar-Based Straw Incorporation on Crop Yield and Nitrogen Uptake and Utilization in a Rice-Rapeseed Rotation System [J]. Scientia Agricultura Sinica, 2025, 58(16): 3280-3292.
[14] XIONG ZhiHao, LIU JunQuan, YE Lin, ZHU DanDan, HOU SuSu, FANG YaTing, CONG RiHuan, REN Tao, LI XiaoKun, LU JianWei. Characterization of Crop Yield and Nutrient Apparent Balance Between Direct and Burning Straw Return in Rice-Rapeseed Rotation System [J]. Scientia Agricultura Sinica, 2025, 58(16): 3293-3303.
[15] LU YiNing, GU XiaoBo, DU YaDan, LI XiaoYan, YAN TingLin, ZHAO TongTong. Conservation Tillage and Nitrogen Application Promote Soil Carbon and Nitrogen Mineralization and Improve Maize Photosynthetic Characteristics and Yield [J]. Scientia Agricultura Sinica, 2025, 58(15): 3051-3063.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!